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Abstract

A linear chord diagram of size n is a partition of the set {1,2,--- ,2n} into sets of
size two, called chords. From a table showing the number of linear chord diagrams
of degree n such that every chord has length at least k, we observe that if we proceed
far enough along the diagonals, they are given by a geometric sequence. We prove
that this holds for all diagonals, and identify when the effect starts.

1 Introduction

A linear chord diagram is a matching of {1,2,---,2n}. Chord diagrams arise in many
different contexts from the study of RNA [5] to knot theory [6]. In combinatorics chord
diagrams show up in the ménage problem [4], partitions [2], and interval orders [3]. In
many of the situations given above the objects being paired lie on a circle and so each pair
is a chord. In this paper the focus will be on linear chord diagrams which can be obtained
from a chord diagram by cutting the circle at some point. We will address diagrams where
there is a specified minimum length for each chord. From a table counting the number of
such diagrams for n, the size, and k, the minimum length, we observe that if we proceed
far enough along the diagonals, they are given by a geometric sequence. We prove that
this holds for all diagonals, and identify when the effect starts.

2 Statement of Result

A linear chord diagram of size n is a partition of the set {1,2,---,2n} into parts of size
2.

We can draw linear chord diagrams with arcs connecting the partition blocks.
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If ¢ = {s., e.} where s. < e. is a block of a linear chord diagram, we say that s is the
start point of ¢ and e, is the end point. The length of c is e. — s..

We say that a chord ¢ covers the integer ¢ if s, < i < e.. We say that a chord ¢ covers
a chord d if it covers s; and e .

Definition 1 Let D,, denote the set of all linear chord diagrams with n chords.

Let M®) denote the class of all linear chord diagrams such that every chord has length
at least k.

Let M denote the set of all linear chord diagrams with n chords such that every
chord has length at least k.

Table 1 shows the sizes of M for various n and k. If k is fixed, M®P can be computed
using on the order of 2¥n? arithmetic operations. For k = 1, MY simply counts all linear
chord diagrams, which is given by

T (nl2n)

For k = 2 and k = 3, a, = |[MP| and b, = |MP| can be computed using linear
recurrences:

an, = (2n —1)ay—1 + an—2
bn = (2n + 2)bn—1 - (67L - 1O>bn—2 + (6n - 16)bn_3 - (272 - 8)bn_4 - bn—5-

The recurrence for |M?|, can be found in [1]; the recurrence for |[M$| is new. Con-
jecturally, there is a linear recurrence for every sequence M) where k is fixed: We will
address these matters elsewhere.

Here we address the diagonals of Table 1. The shaded squares highlight a pattern.
For each shaded square the number in the square one below and one to the right of it is
exactly (n — k + 1) times the number in the current square. This pattern holds for all
such squares:

Theorem 2 Let n and k be positive integers such that n > 3(n — k) and n > k. Then
M) = (= k+ DM

3 Outline of the proof

We consider each diagonal separately. We refer to the i*" diagonal as all the entries such

that (n—k-+1) = 4. For any entry M) on the i diagonal we create (n—k-+1) functions

nk; (J € {0,---,n —k}) which are injective into M;"ff). We show that the images of
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Table 1: Counting chord diagram with long chords

n 11213 4 5] 6 7 8 9 10 11
MD) [ 1 ]3] 15105 | 945 | 10395 | 135135 | 2027025 | 34459425 | 654729075 | 13749310575
MP) [0 1] 5] 36 [320] 3655 | 47844 | 721315 | 12310199 | 234615096 | 4939227215
MP) Tolol 1| 10] 99 | 1146 | 15422 | 237135 | 4106680 | 79154927 | 1681383864
MP Tolol o 1 [ 20 202 | 4317 | 69862 | 1251584 | 24728326 | 535333713
MP) Tololo] o 1| 40 | 876 | 16924 | 332507 | 6944504 | 156127796
MO Tolol o] o o] 1 80 2628 | 67404 | 1627252 | 39892549
MPTololol ol o] o 1 160 7884 269616 8075052
MPTololo] o] o 0 0 1 320 23652 1078464
MPTololol ol o] o 0 0 640 70956
M Tololo] o] o] o 0 0 0 1 1280
M) Tololo] o o 0 0 0 0 0 1

The first four rows can be found in the OEIS under the identification numbers A001147,
A000806, A190823, and A190824, respectively.

these functions are disjoint and cover M

n+1

elements in ./\/lgfll) as there are in M.
To create the bijection «, ) ; we consider the middle 2(n — k) indices. Here is an

example from an element of Mé4):

(k+1)

123456789101112
H_/

Any chords starting or ending in the middle indices are highlighted:

A new chord is inserted covering only the indices in the middle:

123456789101112
H_/
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12345678 91011121314

The new chord then has its start point iteratively swapped with the starting points of
the unbolded chords, starting with the one that started last and stopping when there are
7 unswapped unbolded chords:

SORN

12345678 9101112 12345678 91011121314
D ga2(D)

12345678 91011121314 12345678 91011121314
046,4,1(D) 046,4,0(D)

4 Details of the proof

Definition 3 Let C' be a linear chord diagram. We define L, = {1,2,--- ,k}, My, =
{k+1,k+3,--- . 2n—k}, and Ry, ={2n—k+1,2n—k+1,--- ,2n}. Let C, denote
the set of all chords ¢ € C such that s. € M, or e. € My, ., and Sc denote the set of all
chords ¢ € C' such that ¢ ¢ C, k.

Lemma 4 Given any linear chord diagram in ./\/l,(lk) such that n > 3(n — k) and n > k,
there is no chord c such that s, e. € M, .

Proof. If a chord has both its start point and end point inside M,, , then the largest
length it could have is when it starts at £+ 1 and ends at 2n — k. So the maximum length
any such chord could have is 2n—2k—1. But n > 3(n—k) which is equivalent to 3k > 2n.
Thus the maximum length any such chord could have is 2n -2k —1 < 3k—-2k—1=Fk—1.
But every chord must have length at least k. Thus there is no chord such that its indices
of the start point and end point lie inside M, j O
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Lemma 5 Given any linear chord diagram in M such that n > 3(n—k) andn >k,
Chi contains exactly n — k chords that start in M, and n — k chords that end in M, k.

Proof.

We first observe that no chord has its end index in L,, j, since it if did, its maximum
length would be £ — 1. Similarly, no chord has its start index in R, since it if did, its
maximum length would be 2n — (2n —k + 1) = k — 1. Thus every index in L, is a start
index, and every index in R, is an end index. We also observe that |L, x| = | Ryl

Consider all chords in S¢. Since they neither start nor end in M,, j, they must start
in L, and end in R, j.

Thus |L, x| — |Sc| chords start in L, , and end in M, x, and |R,, x| — |Sc| chords end
in R, and start in M, j.

By Lemma 4, every chord in M either starts in L, ; or ends in 12, .

Thus M, ; has the same number of start indices as end indices, and that number is
n—k.

O
Lemma 6 Given any linear chord diagram C € /\/l,(ffll) such that n > 3(n — k) and
n > k, let a be the chord whose end index is 2n — k + 2 (i.e. the smallest element in
Ryi1k+1). Let m be the number of chords b € S¢ such that s, < s,. Thenm <n—k+1.

Proof.

Let M* be the ordered set of all chords ¢ € Cy, 41 41 such that e, € M, 11 p41. We say
k < cfor k,c € M* if e, < e.. Observe that M* is completely ordered. By Lemma 5, we
have |M*| = n — k. We may relabel the chords in M* to be {c;,¢q, -+, ¢n_r}. Observe
that by Lemma 5, e., < (k+ 1)+ (n—k)+i=n+i+ 1. Since l., = e., — 5., = k+1
we have s., <n+i+1—(k+1) =n—k+i Letm; be the number of chords a € S¢
such that s, < s.,. Then m; < n — k4 1. The largest number of start indices to the left
of s., is n — k + 1, but if it were that large, one of them must be the start of ¢;. Thus
ms < n — k + 1. By induction we have m; < n — k + 1 for all 7.

Now suppose m > n —k+1. Then s., < s, for all ¢ since otherwise there would exists
an ¢ such that m; >n—k+1. Thus s, > (n—k+1)+ (n—k) +1=2n—2k+ 2. Thus
{, is bounded above by 2n — k + 2 — (2n — 2k + 2) = k < k + 1 which contradicts that
fact that every chord has length at least k + 1.

Thusm <n—k+ 1.

|

Definition 7 We define ay,y; fori € {0,---,n—k}, n >k, andn > 3(n — k) to be a
map from MP 1o D,, as follows. Given a diagram C, we insert a new chord ¢ with start
point right before M, and end point right after M, ; to get diagram C*. We then swap
the start index of the new chord with the closest start index of a chord in S¢ to its left.
We continue to swap until there are v start indices of chords in Sc to its left.

Observe that since n > 3(n— k), the number of chords in S is at least n — (2n —2k) >
3(n—k)—2(n—k)=n—k. Thus every a ezists and is well defined.
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Example 1 Obtaining C* from C' is shown below:

12845678 9101112 123 456678 91011121314
C C*

Here is as o0 applied to an element of M§2) :

N
.
/\ 7 N
e RGN —_— ) N
AN 7 AN

1238456 128456738 123845678

Here is cu 31 applied to an element of /\/lf’) :

AN

1238456738 12845678910 123845678910

—_

In these diagrams, the thick lines are chords in C,,, the thin chords are in Sc and the
greyed dashed chord is the new inserted one.

Definition 8 We define B,y for n > k, and n > 3(n — k) to be a map from MPE 1o
D, 1 as follows. Given a diagram C, we denote c to be the chord with end point right
after My, . We then swap the start index of the new chord with the closest start index of
a chord in S¢ to its right. We continue to swap until there are no more start indices of
chords in S¢ to its right. We then remove chord c.

Lemma 9 a,, (/\/lgﬁ)) - /\/lgfll).

Proof. We see that the result will have n 4+ 1 chords, so it suffices to show that every
chord has length at least k + 1.

Consider a chord cin C,, ;. If it has s, € M, and e. € R, , its length is increased by
1, since we inserted a index between M, and R, ;. Otherwise e, € M, ; and s. € Ly,
in which case its length is increased by 1, since we inserted a index between M, ; and
L, x. Since the length of such a chord had to be at least k£ to begin with, it must have at
least length k + 1 after applying o, ;.

Consider the chord we just inserted. It will cover all the indices in M, ;, and every
time we swap, another index will be covered. Since there are a total of n chords before
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inserting, of which M, ; contains 2n — 2k of them, and it swaps until there are 7 chords
to its left in S, it swapped with at least n — (2n — 2k) — 7. Recall that the length of
the chord will be the number of indices it covers plus 1. Thus its length is at least
1+2n—2k)+(n—02n—2k)—i)=14+n—i=21+n—(n—k)=k+1, as desired.

Now consider a chord in S¢.

There are two cases, either it had its start index swapped at some point or it didn’t.
If it didn’t, then it covers the new chord ¢, and has length greater then c’s length. Thus
the chord has length at least k£ 4 1 as desired.

If it did swap, then either its starting index increased by 1 or more.

Suppose that its starting index increased by 1. Then the number of indices that lie
in between its endpoints has increased by 1. When we inserted ¢, it was increased by 2,
but then we moved the starting index forward by 1, causing it to lose 1. Thus its length
increased by exactly 1. Since it must have had length k£ to begin with it now has length
at least k + 1.

Suppose that its starting index increased by more then 1. Let a be its original starting
index after inserting ¢ and b be its starting index after inserting and swapping c¢. Then the
index b — 1 is the starting index of some point in M, y41, since b —a > 1 and otherwise
b would have occurred sooner. Thus the chord with starting index b — 1 has length at
least k 4+ 1. Since the ending index of our chord lies in R which is at least 1 more then
the ending index of the chord at b — 1, the length of our chord after swapping is at least
kE+1.

Thus o, & (MSZ“) - Mﬁfjl” as desired. O

Lemma 10 5, ( ﬁzk)> - Mff__ll)-

Proof. We see that the result will have n — 1 chords, so it suffices to show that every
chord has length at least k& — 1.

Consider a chord r in C,, ;. If it has s, € M, ; and e, € R, j, its length is decreased
by 1, since we removed the first index in R,, ;. Otherwise e, € M and s, € L, in which
case its length is decreased by 1, since we removed the last index from L, ;. Since the
length of such a chord had to be at least k to begin with, it must have at least length
k — 1 after applying S, .

Now consider a chord r in S¢. We break into two cases:

Case 1: s, was swapped with s, at some point. Then s, has decreased by at least 1,
which means that ¢, increased by at least 1. But when we remove s. at the end, £, is
deceased by 2. Thus ¢, never deceases by more then 1. Since ¢, > k, the length of r must
be at least length k — 1 after applying 3, .

Case 2: s, did not swap with s. at some point. Then s, < s., which means that ¢, is
at least 2 + ¢. = k + 2 since /. has length at least k. When we remove s. a the end, /¢, is
deceased by 2. Thus ¢, never deceases by more than 2. Since ¢, > k + 2, the length of r
must be at least length k after applying 3, .

Thus B,k (Mflk)) C MY a5 desired. O

n—1
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Proof (of theorem 2).

We shall proceed by constructing (n — k 4 1) injective function from MP to /\/lgfll)
such that their images partition Mfﬁl”. Let C € M. Let E, 1; be the set of all
linear chord diagrams in MP such that the chord ¢ with e, = 2n — k + 1 (i.e. the
first index after M, ;) has i start points of chords in S to its left. Then by lemma
6 the collection {Ey i1 k41,05 s Ent1k+1,n—k—1} partitions Mgﬁ:&l). By construction we
see that Im(ay, ki) € Ent1k+14. We also see that both ﬁn+1’k+1|En+1,k+1,i o Qi and

On i © Botierilg e, ATe the identity map. Thus there is a bijection between M;k)
and ), j; for every ¢. Thus

e

k+1 —
IMET = apps (MP)| = (n =k + 1)IMP)],

7

Il
=)

as desired.
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