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THE HUOVINEN TRANSFORM AND

RECTIFIABILITY OF MEASURES

BENJAMIN JAYE AND TOMÁS MERCHÁN

Abstract. For a set E of positive and finite length, we prove that
if the Huovinen transform (the convolution operator with kernel
zk/|z|k+1 for an odd number k) associated to E exists in principal
value, then E is rectifiable.

1. Introduction

We say that a subset E ⊂ C is rectifiable if there exists Lipschitz
maps fi : R → C, i = 1, 2, ..., such that

H1
(
E \

∞⋃

i=1

fi(R)
)
= 0,

where H1 stands for the 1-dimensional Hausdorff measure. A locally
finite Borel measure µ on C is rectifiable if there exists a rectifiable set
E ⊂ C such that

µ(C \ E) = 0.

The goal of this paper is to prove the following result.

Theorem 1.1. Fix an odd number k ∈ N. Suppose that µ is a finite
Borel measure for which

(1.1) lim sup
r→0

µ(B(z, r))

r
∈ (0,∞) for µ-a.e. z ∈ C.

If the limit

(1.2) lim
r→0

∫

|z−ω|>r

(z − ω)k

|z − ω|k+1
dµ(ω) exists for µ-a.e. z ∈ C,

then µ is rectifiable.
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2 BENJAMIN JAYE AND TOMÁS MERCHÁN

If k = 1 then Theorem 1.1 was proved by Tolsa [To3] using the
Menger-Melnikov curvature method1; in this case the principal value
integral is the Cauchy transform of the measure µ. The curvature
method is no longer directly applicable to this problem for k ≥ 3, and
it had been an open problem as to whether Theorem 1.1 holds in this
case (see for instance [To5]).
If one replaces the limsup condition in (1.1) with the condition of

positive lower density

(1.3) lim inf
r→0

µ(B(z, r))

r
> 0 for µ-a.e. z ∈ C,

then the case k = 1 of Theorem 1.1 was proved earlier by Mattila [M],
and subsequently for all k odd by Huovinen [H]. It is for this reason
that we call the integral transform given by convolution of a measure

with the singular kernel z 7→ zk

|z|k+1 the Huovinen transform.

Under the assumption (1.3), much stronger criteria for rectifiability
are available in terms of tangent measures that no longer hold under
the condition (1.1), see [P, Section 5.8]. Nevertheless, the tools intro-
duced by Mattila and Huovinen are essential to our method2.

A natural higher dimensional generalization of Mattila’s result for
k = 1 was proved by Mattila-Preiss [MP], who showed that if d ∈
Z∩ [2,∞), s ∈ Z∩ [1, d− 1] and 0 < lim infr→0

µ(B(x,r))
rs

<∞ for µ-a.e.

x ∈ R
d, then the existence of the s-Riesz transform in principal value

implies s-rectifiability3. Here the Riesz transform is the convolution of
a measure in Rd with the kernel x

|x|s+1 where x ∈ Rd \{0}. The positive
lower density assumption was later removed by Tolsa [To4], who intro-
duced a very novel variation of a scheme of Legér [L] (which in turn
has its origins in the work of David-Semmes [DS]).

Villa [Vil] recently extended the results of [M] to perturbations of
the Cauchy kernel, and it would be interesting to understand whether
those results remain valid without the assumption of positive lower
density. The Huovinen kernel does not fall within this perturbative
theory, but our analysis does not appear to apply to perturbations in

1building upon a number of important results including [Me, MMV, Dav3, DM,
MM, NTV2]

2More precisely, these techniques play an important role in Theorem A below.
3We say that a Borel measure µ is s-rectifiable if there exist Lipschitz maps

fi : R
s → R

d, i = 0, 1, ..., such that µ(Rn \⋃∞
i=0 fi(R

s)) = 0.
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the generality that they are considered in [Vil].

Broadly speaking, we proceed by adapting the scheme implemented
by in Tolsa [To4], but doing so required overcoming a basic difficulty.
A measure µ for which the Cauchy (or Riesz) transform exists in prin-
cipal value enjoy some ‘local flattening’ properties4 on account of the
fact that the only symmetric measures associated to these kernels with
suitable growth are (the Hausdorff measures of) planes. However, there
are symmetric measures associated to the Huovinen kernel which are
not flat – the spike measures – which will appear often in our analy-
sis. It appears that all variants of the Legér scheme (for instance in
[L, CMPT, To5, JTV]) have relied on this local flattening property in
one way or another. In this paper we circumvent these difficulties with
a novel decomposition of a measure involving a modified density, rely-
ing significantly on our previous papers [JM1, JM2], which we recall in
the next sections.

1.1. A first necessary condition for existence of principal value:

Small local action and transportation coefficients. In the paper
[JM1] we studied the geometric consequences of a weaker notion than
existence of principal value called small local action.
For a homogeneous Calderón-Zygmund operator, one can charac-

terize the small local action property geometrically in terms of the
transportation distance to the class of symmetric measures associated
to the kernel (Theorem 1.1 of [JM1], building upon work of Mattila
[M, M1]). We do not define these terms here, but rather state what it
means for the Huovinen transform.

Definition 1.2. A k-spike measure associated to a line D ∈ G0 (i.e.
going through 0) and the vertex z ∈ C is a measure of the form, for
some c > 0,

νm,D,z = c
m−1∑

n=0

Heπin/mD+z,

where m divides k (henceforth m | k). We set Sk to be the collection
of all such spike measures over D ∈ G0, z ∈ C.

Fix the Lipschitz continuous function ϕ that satisfies ϕ ≡ 1 on [0, 3),
‖ϕ‖Lip = 1, and supp(ϕ) ⊂ [0, 4).

4by this we mean that on a small scale either there is very little measure, or the
support of the measure is close to a line/plane of appropriate dimension
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Definition 1.3. Given a locally finite Borel measure µ, z ∈ C, and
r > 0, we define the transportation distance as

α(k)
µ (B(z, r)) = inf

ν∈Sk:
z∈supp(ν)

αµ,ν(B(z, r)),

where, for a Borel measure ν,

αµ,ν(B(z, r)) = sup
f∈Lip0(B(z,4r))

‖f‖Lip≤ 1
r

∣∣∣1
r

∫

C

ϕ
( | · −z|

r

)
f d(µ− cµ,νν)

∣∣∣,

and with the normalizing constant cµ,ν

cµ,ν
5 =





∫
C
ϕ
( |·−z|

r

)
dµ
[∫

C
ϕ
( |·−z|

r

)
dν
]−1

if
∫
C
ϕ
( |·−z|

r

)
dν 6= 0

0 otherwise.

The following result is an immediate consequence of Proposition A.1
and Theorem 1.5 of [JM1], making essential use of the aforementioned
work of Mattila [M] and Huovinen [H].

Theorem A. [JM1] Suppose that µ is a finite Borel measure satisfying
(1.1) and (1.2), then

(1.4) lim
r→0

α(k)
µ (B(z, r)) = 0 for µ-a.e. z ∈ C.

This result provides valuable geometric information without which
we would not be able to prove Theorem 1.1, but the condition (1.4)
alone does not imply that µ is rectifiable, even if k = 1 – see for instance
the examples in Section 5.8 of [P].

1.2. A second necessary condition for the existence of principal

value: Operator boundedness. We set

Kk(z) =
zk

|z|k+1
, for z ∈ C \ {0}.

For a non-atomic Borel measure µ, we say the Huovinen transform
associated to µ is bounded in L2(µ) if there exists C > 0 such that

(1.5) sup
κ>0

∫

C

∣∣∣
∫

C\B(z,κ)

Kk(z − ω)f(ω)dµ(ω)
∣∣∣
2

dµ(z) ≤ C‖f‖2L2(µ)

for every f ∈ L2(µ).
A well-known consequence (see, for instance [Dav2], page 56) of the

L2-boundedness condition (1.5) is that supz∈C,r>0
µ(B(z,r))

r
<∞.

5For convenience, from now on we will suppress the dependence on both location
and radius.
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A simple special case of much more general results of Nazarov-Treil-
Volberg [NTV2] and Tolsa [To3] is the following theorem, valid for a
wide class of Calderón-Zygmund operators.

Theorem B. [NTV2] Suppose that µ is a finite Borel measure satis-
fying (1.2) and

(1.6) lim sup
r→0

µ(B(z, r))

r
<∞ for µ-a.e. z ∈ C.

For every ε > 0 there is a set Eε and a constant C = C(ε) such
that µ(C\Eε) < ε and the measure µ|Eε satisfies the L2-boundedness
condition (1.5).

The following Corollary is immediate from Theorem B.

Corollary 1.4. Suppose that µ is a finite Borel measure satisfying
(1.2) and (1.6). There is a decomposition supp(µ) = F ∪ ⋃∞

j=1Ej,

where µ(F ) = 0 and (1.5) holds with µ replaced by µ|Ej
for a constant

C = C(j).

We conclude that the notion of principal value is (although qualita-
tive) stronger than the L2-boundedness of the operator. It is actually
significantly stronger : In [JN] an example was constructed of a (purely
unrectifiable) measure for which the Huovinen transform is bounded
in L2, but fails to exist in principal value6. Higher dimensional ana-
logues of this example featuring kernels of spherical harmonics have
recently been developed by Mateu and Prat [MaPr]. It would be very
challenging to extend Theorem 1.1 to this higher dimensional setting
– with the primary issue being to understand the structure of the set
of symmetric measures associated to these higher dimensional kernels.
Other examples of kernels for which L2-boundedness does not imply
existence of principal value can be found in [CH, Dav].
We have thus far recorded two necessary conditions for the existence

of principal value in Theorems A and B. Taken individually, neither
condition needs to imply the existence of principal value, but by build-
ing on prior work of Mattila-Verdera [MV], we showed in [JM2] that
when combined, these two necessary conditions are indeed sufficient:

Theorem C. [JM2, Theorem 1.5] Suppose that µ is a finite non-atomic
Borel measure satisfying the transportation coefficient condition (1.4),

6This is another instance in which the Huovinen and Cauchy transforms behave
very differently, since if µ is a non-atomic measure for which the Cauchy transform
is bounded in L2, then the Cauchy transform exists in principal value (the same
result here also holds for the (d − 1)-Riesz transform in Rd, as can be seen by
stringing together the results of [ENV, NToV, NToV2, MV]).
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and the L2-boundedness condition (1.5) holds. Then the principal value
limit (1.2) exists.

1.3. A revised statement. We conclude with a revised statement,
which is essentially equivalent to Theorem 1.1, and which will be our
focus:

Theorem 1.5. Let µ be a finite non-atomic Borel measure in the com-
plex plane and whose support satisfies H1(supp(µ)) <∞. Suppose that
the Huovinen transform is bounded in L2(µ) and

lim
r→0

α(k)
µ (B(z, r)) = 0 for µ-a.e. z ∈ C.

Then µ is rectifiable.

This result is only new if k ≥ 3 (for k = 1 it is a consequence of
[To3]), but we will prove the statement for all odd k (although many of
the statements of lemmas are automatically satisfied in the case k = 1).

In the case k = 1, imposing the condition limr→0 α
(k)
µ (B(z, r)) = 0 for

µ-a.e. z ∈ C is unnecessary – the result still holds if one removes this
statement, which is a theorem due to David [Dav3], see also David-
Mattila [DM]. However, for k ≥ 3 the conclusion of rectifiability may
fail without the additional assumption on the transportation numbers
(cf. [JN]).

1.4. An overview of the proof. As we have already mentioned, the
proof of Theorem 1.5 follows a similar scheme to the one in Tolsa [To4]:
We decompose our measure into different pieces, where an adapted
version of the David-Léger-Semmes scheme [L, DS] may be applied
construct a Lipschitz graph that approximates our measure. Finally,
we revise Tolsa’s scheme in order to prove that the Lipschitz graph
actually covers a good portion of our measure.
In order to carry both Léger’s and Tolsa’s schemes in a given scale,

one needs, besides of course the analytic properties of the singular
integral operator, two specific features from the measure: flatness with
respect to lines and nearly maximal density. A priori, we are only
equipped with spike flatness, i.e. our measure is in concentration close
to either a line or to a spike. However, spikes allow big oscillations
in density, making harder the search for suitable scales with nearly
maximal density.
These issues are mainly bypassed with the decomposition of the mea-

sure (see Section 6) and the development of a modified density (see
Sections 4 and 5). This new density moves us away from the center
of the spikes (therefore it finds for us scales with regular flatness) and
helps us to classify the spikes by the density in their rays.
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In Sections 7 and 8 we carry out a variant of the Léger construction of
an approximating Lipschitz curve, where the transportation coefficients
play a central role.
The necessary geometric toolbox for Sections 4–8 is developed in

Section 3.
Sections 9 and 10 closely follow Tolsa [To4], and mainly concern the

Calderón-Zygmund theory required to show that the approximate Lip-
schitz curve (constructed in Section 7) does not rotate too much.

2. Notation and Preliminaries

In this section we include the basic notation that we will use through-
out the paper and include some preliminaries from geometric measure
theory that are relevant for the geometric constructions occupying the
first half of the paper. Notation specific for the analytic part of the
paper is included in Section 10.

2.1. Notation.

• We shall denote by C > 0 and c > 0 respectively large and
small constants that may change from line to line. By A . B,
we shall mean that A ≤ CB for some constant C > 0. A ≈ B
then means that both A . B and B . A. By A ≪ B we shall
mean that A ≤ c0B for some sufficiently small constant c0 > 0.

• Throughout the paper we will only consider locally finite Borel
measures and they will simply be referred to as measures.

• An interval in R will be typically denoted by I. Set I0 = (−1, 1).
• B(z, r) denotes the open ball centered at z ∈ C with radius
r > 0. Given an open ball B, we will denote its center by c(B)
and its radius by r(B). Given Λ > 0 we denote by ΛB the ball
with center c(B) and radius Λr(B).

• Gz denotes the collection of 1-dimensional affine linear subspaces
of C going through z ∈ C.

• For E ⊂ C set

H1(E) = sup
δ>0

[
inf
{ ∞∑

j=1

2rj : E ⊂
∞⋃

j=1

B(xj , rj) and rj ≤ δ
}]
.

With this normalization, for L ∈ Gz, H1
|L coincides with the

usual one-dimensional Lebesgue measure on L.
• For a function f defined on an open set U ⊂ C, define

‖f‖Lip(U) = sup
x,y∈U, x 6=y

|f(x)− f(y)|
|x− y| .
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In the case U = C, we write ‖f‖Lip instead of ‖f‖Lip(C).
• For an open set U ⊂ C, define Lip0(U) to be the collection of
functions f supported on a compact subset of U with

‖f‖Lip(U) <∞.

• We denote by supp(µ) the closed support of the measure µ; that
is,

supp(µ) = C \ {∪B : B is an open ball with µ(B) = 0}.
• δµ(B(z, r)) = µ(B(z,r))

2r
is referred to as the density of µ at the

scale B(z, r).

• We denote by Θ∗
µ(z) = lim supr→0

µ(B(z,r))
2r

, the upper density of
the measure µ at the point z.

• For x ∈ C, write x = ℜ(x)+ iℑ(x). Denote by π the projection
from C → R:

π(x) = ℜ(x).
• We will use the notation

ϕz,r(y) = ϕ
( |y − z|

r

)
, for y ∈ C.

• We define the class of functions Fz,r as follows:

Fz,r = {f : f ∈ Lip0(B(z, 4r)), ‖f‖Lip ≤ 1/r}.
• Given a ball B and a line D ∈ Gc(B), it will be convenient
to write αµ,D(B) instead of αµ,H1

|D
(B). We will often refer to

measures of the form cH1
|D for some c > 0 as a line measures.

2.2. Two transportation numbers that will recur throughout

the work. We will mainly work with two transportation numbers
(Definition 1.3). Recall that Sk is the set of k-spike measures, and
so S1 is the set of line measures in C. We set

• α(k)
µ (B(z, r)) as the transportation coefficient with respect to

spikes and

• αµ(B(z, r)) = α
(1)
µ (B(z, r)) as the transportation coefficient

with respect to lines.

2.3. Basic Operator Notation. For a kernel functionK : C×C\{(z, ω) :
z = ω} → C such that |K(z, ω)(z−ω)| extends to a bounded function
on C× C, we set

P.V.

∫

C

K(z, ω)f(ω)dµ(ω) = lim
r→0

∫

|z−ω|>r

K(z, ω)f(ω)dµ(ω)
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provided that the right hand side exists. We say that K forms a prin-
cipal value operator on Lp(µ) (1 < p <∞) if there is a constant C > 0

(2.1)

∫

C

∣∣∣P.V.
∫

C

K(z, ω)f(ω)dµ(ω)
∣∣∣
p

dµ(z) ≤ C‖f‖pLp(µ)

for all f ∈ Lp(µ). We call the least constant C such that (2.1) holds
as the principal value operator norm.
It will prove very useful to define operators with a smoother cut-off.

Define a function Ψ : [0,∞) → [0,∞) such that Ψ is non-decreasing,
Ψ(t) ≡ 0 on [0, 1/2] and Ψ(t) = 1 for t ≥ 1, and ‖Ψ′′‖∞ . 1. Put, for
r > 0 and any measure ν

T̂rν(z) =

∫

C

Ψ
( |z − ω|

r

)
Kk(z − ω)dν(ω),

T̂⊥
r ν(x) =

∫

C

Ψ
( |z − ω|

r

)
K⊥

k (z − ω)dν(ω),

where K⊥
k (z) =

ℑ(zk)
|z|k+1

for z ∈ C \ {0},

T̂r1,r2ν(x) =

{
T̂r1ν(x)− T̂r2ν(x) if r1 < r2
0 if r2 ≥ r1,

and

T⊥
r1,r2

ν(x) =

{
T̂⊥
r1
ν(x)− T̂⊥

r2
ν(x) if r1 < r2

0 if r2 ≥ r1.

Lemma 2.1. Suppose µ is a locally finite Borel measure.

(1) If the principal value limit (1.2) exists at a given point z ∈ C,

then limr→0 T̂r(µ)(z) exists and is equal to the same limit.
(2) If the Huovinen transform is bounded in L2(µ) (in the sense

that (1.5) holds), then there is a constant C such that

(2.2) ‖ sup
r>0

|T̂r(fµ)|‖2L2(µ) ≤ C‖f‖2L2(µ) for every f ∈ L2(µ)

The proof of (1) is by direct calculation, while (2) is standard Calderón-
Zygmund theory: one estimates the difference between the smooth and
rough cut-off by a suitable maximal function, and applies a Cotlar type
lemma to bound the maximal singular integral (see [To5], Chapter 2).

In the event that there is a constant C such that (2.2) holds, we

denote the least such constant by ‖T̂µ‖L2(µ),L2(µ).
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We warn the reader here that, even if the associated principal value

operator exists and is bounded in L2(µ), then ‖T̂µ‖L2(µ),L2(µ) need not
be comparable with the principal value operator norm.

3. Transportation coefficients tool box

Now we proceed to record a series of estimates regarding the trans-
portation coefficients that will be used throughout the paper.
Throughout this section, ν will denote a locally finite Borel measure.

Lemma 3.1. Let γ > 0 and suppose s ∈ (0, r), B(z, s) ⊂ B(x, 3r),
dist(z, supp(ν)) ≥ 2s, and

αµ,ν(B(x, r)) ≤ γδµ(B(x, r)).

Then

δµ(B(z, s)) ≤ γ
(r
s

)2
δµ(B(x, r)).

Proof. Choose f ≡ 1 on B(z, s) with supp(f) ⊂ B(z, 2s) and ‖f‖Lip ≤
1
s
. Then s

r
f ∈ Fx,r. Since αµ,ν(B(x, r)) ≤ γδµ(B(x, r)), but supp(f) ∩

supp(ν) = ∅,
1

r
· s
r
· µ(B(z, s)) ≤ γδµ(B(x, r)),

and the result follows. �

Lemma 3.2. Let γ > 0 and suppose s ∈ (0, r/2), B(z, 3s) ⊂ B(x, 3r),
and

αµ,ν(B(x, r)) ≤ γδµ(B(x, r)).

Then

αµ,ν(B(z, s)) . γ
(r
s

)2
δµ(B(x, r)).

Proof. Without loss of generality, suppose x = 0, r = 1 and µ(B(0, 1)) =
1. Insofar as B(z, 3s) ⊂ B(0, 3) and s < 1/2, supp(ϕz,s) ⊂ {ϕ0,1 ≥ 1

2
}

and so the function g = ϕz,s

ϕ0,1
∈ Lip0(B(0, 4)) with ‖g‖Lip . 1

s
. For

f ∈ Fz,s, the function s
C
f · g ∈ F0,1 for a suitable constant C > 0, so

testing the condition αµ,ν(B(0, 1)) ≤ γ yields that
∣∣∣
∫
fϕz,sd

(
µ−

∫
ϕ0,1 dµ∫
ϕ0,1 dν

ν

) ∣∣∣. γ
1

s
.

On the other hand, testing the condition αµ,ν(B(0, 1)) ≤ γ with the
function s

C
g yields

∣∣∣
∫
ϕz,sdµ−

∫
ϕ0,1 dµ∫
ϕ0,1 dν

∫
ϕz,sdν

∣∣∣. γ · 1
s
.
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The required estimate is now obtained by combining these two inequal-
ities. �

Lemma 3.3 (Continuity of transportation coefficients). Given a se-
quence {(xj , rj)}j≥0 ∈ C× (0,∞) satisfying that xj → x0 and rj → r0,
we have the following:

(1) αµ(B(xj , rj)) → αµ(B(x0, r0)).
(2) Moreover, given a sequence Dj ∈ Gxj

for all j ≥ 0 satisfying
∠(Dj , D0) → 0, then αµ,Dj

(B(xj , rj)) → αµ,D(B(x0, r0)).

We postpone the proof to the appendix.

4. Density ratio

For a non-zero measure we set

(4.1) Dν = sup
r,s>0

x,z∈supp(ν)

δν(B(x, r))

δν(B(z, s))
.

Observe that

• for any non-zero measure ν 6≡ 0, Dν ≥ 1,
• if ν is a line measure, then Dν = 1, and
• if ν ∈ Sk, then Dν ≤ k.

Lemma 4.1. Given a measure ν and x ∈ C,

δν(B(x, r)) ≤ 3Dν · δν(B(z, s)) for every r, s > 0 and z ∈ supp(ν).

Moreover, if ν is a line measure, then

δν(B(x, r)) ≤ δν(B(z, s)) for every r, s > 0 and z ∈ supp(ν).

Proof. If ν(B(x, r)) = 0 then there is nothing to prove. Otherwise
r > dist(x, supp(ν)), and fix xν ∈ supp(ν) to be the closest point to
x. The first statement follows from noticing that B(x, r) ⊂ B(xν , 3r).
For the second statement, merely observe that if ν is a line measure,
then B(x, r) ∩ supp(ν) ⊂ B(xν , r) ∩ supp(ν). �

Lemma 4.2. Let γ > 0 and suppose s ∈ (0, r], B(z, s) ⊂ B(x, 3r), and

αµ,ν(B(x, r)) ≤ γδµ(B(x, r)),

for some measure ν satisfying that x ∈ supp(ν). Then,

(1) if γ < 1
9
(s/r)2, one has

δµ(B(z, s)) ≤ 3Dν

(
1 + 8

√
γ · r

s

)
δµ(B(x, r)),

and moreover, if ν is a line measure,

δµ(B(z, s)) ≤
(
1 + 8

√
γ · r

s

)
δµ(B(x, r)).
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(2) If γ < 1
9Dν

(s/r)2, and in addition, z ∈ supp(ν), then

δµ(B(z, s)) ≥ D−1
ν

(
1− 8

√
Dνγ ·

r

s

)
δµ(B(x, r)).

Proof. The statements are both trivial if Dν = +∞, so we assume
otherwise. Additionally, if δµ(B(x, r)) = 0, then µ = ν in B(x, r), but
x ∈ supp(ν) so µ(B(x, r)) = ν(B(x, r)) > 0, a contradiction. Therefore
δµ(B(x, r)) > 0.
Now, without loss of generality we set x = 0, r = 1, and µ(B(0, 1)) =

1. Then 0 ∈ supp(ν). We first prove (1). Fix η ∈ (0, 1/3). Pick two
bump functions f1 and f2 satisfying

• f1 ≡ 1 on B(z, s), f1 ≡ 0 outside B(z, (1 + η)s),
0 ≤ f1 ≤ 1, and ‖f1‖Lip ≤ 1/(ηs).

• f2 ≡ 1 on B(0, 1− η), f2 ≡ 0 outside B(0, 1),
0 ≤ f2 ≤ 1, and ‖f2‖Lip ≤ 1/η.

On one hand, observe that ηsf1 ∈ F0,1 and therefore testing the con-
dition αµ,ν(B(0, 1)) ≤ γ with ηaf1 yields

(4.2)
µ(B(z, s))

s
≤ ν(B(z, (1 + η)s))

s

∫

C

ϕdµ
[∫

C

ϕdν
]−1

+
γ

ηs2
.

On the other hand, we notice that ηf2 ∈ F0,1, and hence by analogous
reasoning,

(4.3) 1 = µ(B(0, 1)) ≥ ν(B(0, 1− η))

∫

C

ϕdµ
[∫

C

ϕdν
]−1

−γ
η
.

Set (cf. Lemma 4.1)

κ =

{
1 if ν is a line measure

3 otherwise
.

Bringing (4.2) and (4.3) together, we obtain

µ(B(z, s))

s
≤
(
1 +

γ

η

)ν(B(z, (1 + η)s))

s · ν(B(0, 1− η))
+

γ

ηs2

=
(
1 +

γ

η

)1 + η

1− η

δν(B(z, (1 + η)s))

δν(B(0, 1− η))
+

γ

ηs2

≤
(
1 +

γ

η

)1 + η

1− η
κDν +

γ

ηs2

≤
(1 + η

1− η
+

3γ

ηs2

)
κDν ,
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where in the final inequality we have used the facts that 1+η
1−η

≤ 2,

κ ≥ 1, Dν ≥ 1 and s ≤ 1. Put η−1 = s
√

2
3γ

+ 1 so that then

1 + η

1− η
+

3γ

ηs2
= 1 + 2

√
6

√
γ

s
+

3γ

s2
≤ 1 + (1 + 2

√
6)

√
γ

s
,

and (1) follows.
The proof of (2) follows an entirely analogous line of reasoning.

Again fix η ∈ (0, 1/3). First notice that testing αµ,ν(B(0, 1)) ≤ γ
with suitable test functions yields

µ(B(z, s))

s
≥
(
1− γ

η

)ν(B(z, (1 − η)s))

sν(B(0, 1 + η))
− γ

ηs2
.

Next, observe that due to the fact that z ∈ supp(ν),

ν(B(z, (1 − η)s)

sν(B(0, 1 + η))
≥ 1− η

1 + η
D−1

ν ,

and so

δµ(B(z, s)) ≥
(1− η

1 + η
− 2γDν

ηs2

)
D−1

ν .

(Here we are using that 1−η
1+η

≤ 1, and Dν ≥ 1.) Choosing η−1 =

s
√

2
3γDν

− 1 we complete the proof of part (2) with some elementary

manipulations. �

Lemma 4.3. Let δ, γ > 0 with δ ≤ 1 and suppose s ∈ (0, r], B(z, s) ⊂
B(x, 2r), δµ(B(z, s)) ≥ δ · δµ(B(x, r)), and

αµ,σ(B(x, r)) ≤ γδµ(B(x, r)), αµ,ν(B(z, s)) ≤ γδµ(B(z, s)),

where ν and σ are measures such that x ∈ supp(σ) and z ∈ supp(ν).
Then for every y ∈ supp(ν) ∩B(z, s),

min
{
s, dist(y, supp(σ))

}
.

√
γ ·Dν

δ
· r.

Proof. Suppose x = 0, r = 1 and µ(B(0, 1)) = 1. Fix y ∈ B(z, s) ∩
supp(ν), and set t = min{s, 1

2
· dist(y, supp(σ))}. We may assume that

t ≥ 16
√
Dνγ · s as otherwise the claimed estimate is clearly true.

Under this assumption on t, part (2) of Lemma 4.2 ensures that

δµ(B(y, t)) ≥ D−1
ν

(
1−8

√
Dνγ

s

t

)
δµ(B(z, s)) ≥ 1

2Dν
δµ(B(z, s)) ≥ δ

2Dν
.

On the other hand, by construction t ≤ 1, so B(y, t) ⊂ B(0, 3) and
by Lemma 3.1,

δµ(B(y, t)) ≤ γ

t2
µ(B(0, 1)) =

γ

t2
.
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Joining these two chains of inequalities together, we obtain

δ ≤ 2Dν
γ

t2
,

and this yields the desired upper bound on t. �

The following Corollary is an immediate consequence of this lemma
in the case when ν and σ are line measures, but it will be used very
often in what follows so we state it separately.

Corollary 4.4. Let γ > 0 and δ ∈ (0, 1]. Suppose s ∈ (0, r], B(z, s) ⊂
B(x, 2r), δµ(B(z, s)) ≥ δ · δµ(B(x, r)) and there exist D ∈ Gx and
D′ ∈ Gz such that

αµ,D(B(x, r)) ≤ γδµ(B(x, r)), αµ,D′(B(z, s)) ≤ γδµ(B(z, s)).

Then

min
{
s, dist(y,D)

}
.

√
γ

δ
· r for every y ∈ D′ ∩ B(z, s),

and therefore

∠(D,D′) .

√
γ

δ
· r
s
.

The next lemma will play a crucial role in the stopping time argu-
ment.

Lemma 4.5. Fix δ ∈ (0, 1] and γ > 0 with γ ≪ δ. There is a constant
C > 0 such that the following holds:
Suppose that B(z, 4s) ⊂ B(x, 2r) where s ∈ [C

√
γ
δ
r, 1

4
r], and addition-

ally

• αµ,D(B(x, r)) ≤ γδµ(B(x, r)),

• α(k)
µ (B(z, 4s)) ≤ γ2δµ(B(x, r)), and

• δµ(B(z, s)) ≥ δ · δµ(B(x, r)).

Then there exists D′ ∈ Gz such that

αµ,D′(B(z, s)) .
γ2

δ
δµ(B(z, s)) and ∠(D′, D) .

√
γ

δ

r

s
.

Proof. Fix q ≥ 1 to be chosen momentarily, and suppose that s ∈
[q
√

γ
δ
r, 1

4
r]. Insofar as δµ(B(z, s)) ≥ δ · δµ(B(x, r)), there is a spike

measure ν, with z ∈ supp(ν), satisfying

αµ,ν(B(z, 4s)) ≤ 2
γ2

δ
δµ(B(z, s)).

There is a line D′ in supp(ν) that contains z. If ν|B(z,4s) = H1
|D′∩B(z,4s),

then certainly the desired inequality holds (see Lemma 3.2). So suppose
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not and therefore there is another line D′′ in the support of ν which
intersects B(z, 4s). But now since ∠(D′, D′′) ≥ π/k, there must be
a point y ∈ B(z, 4s) ∩ (D′ ∪ D′′) ⊂ B(z, 4s) ∩ supp(ν) that is at a
distance & s from the line D. On the other hand, B(z, 4s) ⊂ B(x, 2r)
and y ∈ B(z, 4s) so Lemma 4.37 ensures that (recall Dν ≤ k)

min(s, dist(y,D)) .

√
γ

δ
r .

s

q
.

But dist(y,D) & r, so we reach a contradiction if q is large enough.

Therefore, setting C = q, we must have that αµ,D′(B(z, s)) . γ2

δ
δµ(B(z, s)).

Since γ ≪ δ, the second assertion of the lemma now follows from
Corollary 4.4. �

5. Navigating through spikes: a modified density

We introduce a density that enables one to find a flat piece of a
measure µ given that µ is close to a spike in transportation distance.
For ν ∈ Sk \ {ν 6≡ 0}, set

λν = inf
x∈supp(ν)

r>0

1

r
sup



t ∈ (0, r) :

there are B(z, t) ⊂ B(x, r), z ∈ supp(ν),
a line D ∈ Gz, and c > 0, such that
ν|B(z,4·30t) = cH1

|D∩(B(z,4·30t))



 .

and

λk = inf
ν∈Sk,ν 6≡0

λν .

We will often use the simple observation that λk & 1.
Now recall the density ratio (4.1). We define

Dk = sup
ν∈Sk, ν 6≡0

Dν .

Observe that 1 ≤ Dk ≤ k . 1.

Fix ε≪ 1. For x ∈ C and r > 0, set

Sx,r(ε) =

{
B :

B a ball, B ⊂ B(x, r), δµ(B) ≥ 1
2Dk

δµ(B(x, r)),

r(B) ≥ λk

2
r, and αµ(30B) ≤ εδµ(B)

}
.

We then define the modified density

δ̃µ,ε(B(x, r)) =

{
infB∈Sx,r(ε) δµ(B) if Sx,r(ε) 6= ∅

0 otherwise.

7Applied with σ 7→ H1|D, ν 7→ ν, and s replaced by 4s.



16 BENJAMIN JAYE AND TOMÁS MERCHÁN

We will usually just drop the subscript ε, and write δ̃µ(B(x, r)) in-

stead of δ̃µ,ε(B(x, r)). Observe that we have, for any ball B(x, r) and
B ∈ Sx,r(ε),

(5.1) δµ(B) ≤ 2

λk
δµ(B(x, r)), and so δ̃µ(B(x, r)) ≤ 2

λk
δµ(B(x, r)).

Lemma 5.1. Let x ∈ C and r > 0 be such that

(5.2) α(k)
µ (B(x, 30r)) ≪ εδµ(B(x, r)).

Then we have that

Sx,r(ε) 6= ∅
and

(5.3)
1

Ck
δµ(B(x, r)) ≤ δ̃µ(B(x, r)) ≤ Ckδµ(B(x, r))

where Ck = max{2Dk, 2/λk}.
Proof. Without loss of generality, we assume that x = 0, r = 1 and
µ(B(0, 1)) = 1. Choose ν ∈ Sk such that αµ,ν(B(0, 30)) ≤ κ · ε with
κ ≪ 1.
First, we note that it suffices to verify that S0,1(ε) 6= ∅. Indeed, if

this is the case, then the lower bound in (5.3) is given by the definition
of S0,1(ε), while the upper bound follows from (5.1).
Now we proceed to prove that S0,1(ε) 6= ∅. If the measure ν is a line,

then the scale B(0, 1) itself belongs to S0,1(ε).
If ν is a spike, i.e. ν ∈ Sk \S1, then by using the definition of λν , we

can find z ∈ supp(ν)∩B(0, 1) and s > 0 satisfying s ≥ 1
2
λν ≥ 1

2
λk & 1,

B(z, s) ⊂ B(0, 1), and such that ν|B(z,4·30s) = cH1
|L∩B(z,4·30s), for some

line segment L and c > 0.
Now using Part 2 of Lemma 4.2, we have that

δµ(B(z, s)) ≥ 1

2Dν

δµ(B(0, 1)) ≥ 1

2Dk

,

and so δµ(B(z, s)) ≈ 1. On the other hand, B(z, 30s) ⊂ B(0, 30) and
s & 1, so Lemma 3.2 ensures that

αµ(B(z, 30s)) . κε . κεδµ(B(z, s)) < εδµ(B(z, s)).

This proves that S0,1(ε) 6= ∅. �

Our last preparatory lemma is an essential ingredient to push through
an analogue of Tolsa’s scheme. It says, roughly, that for flat scales, con-

trol of δ̃µ prevents the density δµ from being too large.
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Lemma 5.2. Fix θ ∈ (0, 1) and 0 < ε≪ θ. Suppose αµ(B(x, 30r)) ≤ ε

and δ̃µ(B(x, r)) ≤ 1 + θ. Then for every B′ ⊂ B(x, 30r) satisfying
r(B′) ≥ 1

200
ε1/4r we have that

δµ(B
′) ≤ 1 + θ + Cε1/8.

Proof. Without loss of generality, set x = 0 and r = 1. FixD ∈ D0 with
αµ,D(B(0, 30)) ≤ (1 + θ)ε. Assume there exists a ball B′ ⊂ B(0, 30)
satisfying r(B′) ≥ 1

200
ε1/4 and δµ(B

′) ≥ 1+θ+Lε1/8 for a large constant
L. By monotonicity of the measure, this ensures that δµ(B(0, 30)) &
ε1/4. Therefore,

αµ,D(B(0, 30)) . ε3/4δµ(B(0, 30)),

and since ε3/4 ≪ (r(B′))2, using parts (1) and (2) of Lemma 4.2 (in
that order) results in the following chain of inequalities:

1+θ+Lε1/8 ≤ δµ(B
′) ≤ (1+Cε1/8)δµ(B(0, 30)) ≤ (1+Cε1/8)δµ(B(0, 1)).

Insofar as ε≪ 1, if L is large enough then

δµ(B(0, 1)) ≥ 1 + θ +
L

2
ε1/8.

We notice that the previous trivially implies that

αµ,D(B(0, 30)) ≤ εδµ(B(0, 1)),

and so in particular S0,1(ε) 6= ∅.
Now, insofar as δ̃µ(B(0, 1)) ≤ 1+θ, we can find a ball B̃ = B(z, s) ∈

S0,1(ε) with

1

2Dk
≤ δµ(B̃) ≤ 1 + θ + ε2 and αµ(30B̃) ≤ εδµ(B̃) . εδµ(30B̃).

Since s ≈ 1, Lemma 4.38 ensures that d(z,D) . ε1/2. Therefore, we

can inscribe in B̃ a ball B̂ centred on D of radius (1 − C
√
ε)s, and so

δµ(B̃) ≥ (1−C√ε)δµ(B̂). But now part (2) of Lemma 4.2 ensures that

δµ(B̂) ≥ (1− C
√
ε)δµ(B(0, 1)) ≥ (1− C

√
ε)
(
1 + θ +

L

2
ε1/8
)
.

Finally, for large enough L,

δµ(B̃) ≥ 1 + θ +
L

4
ε1/8,

reaching our desired contradiction. �

8applied with r and s replaced by 30r and 30s respectively, σ = H1|D, ν equal

a line measure with αµ,ν(30B̃) . εδµ(30B̃), and δ replaced by 1
2Dk

& 1
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6. The Main Lemma and the proof of Theorem 1.5

Now we are ready to state the Main Lemma.

Main Lemma 6.1. Fix M > 1, ε ∈ (0, 1), and θ ∈ (0, 1). Let
B0 = B(x0, r0) be an open ball and F a compact subset with F ⊂ 10B0

satisfying

(a) δµ(B0) = 1, αµ(30B0) ≤ ε, and µ(10B0 \ F ) ≤ εr0,

(b) δ̃µ(B(x, r)) ≤ 1 + θ2 for all x ∈ F and r ∈ (0, 90r0),

(c) α
(k)
µ (B(x, r)) < ε2 for every ball B(x, r) where x ∈ F and r ∈

(0, 600r0),

(d) ‖T̂µ‖L2(µ),L2(µ) ≤M ,

(e) |T̂r1,r2(µ)(x)| < ε for all x ∈ F and r1, r2 ∈ (0, 90r0).

There exists an absolute constant c0 > 0 such that if θ is chosen small
enough depending on M , and ε is chosen small enough in terms of θ
andM , then there Lipschitz graph Γ such that µ(B0∩F ∩Γ) ≥ c0µ(B0).

6.1. Proof of Theorem 1.5. We first use Lemma 6.1 to give the

Proof of Theorem 1.5. Suppose that µ is a non-atomic measure satisfy-
ing the assumptions of Theorem 1.5. As we discussed in the introduc-
tion (see [Dav2]), since the Huovinen transform is bounded in L2(µ),
it follows that

sup
x∈C,r>0

δµ(B(x, r)) <∞,

and, therefore, insofar as H1(supp(µ)) <∞,

(6.1) Θ∗
µ(x) := lim sup

r→0
δµ(x, r) ∈ (0,∞) for µ-a.e. x ∈ C.

From Theorem C we have that the Huovinen transform exists in prin-
cipal value (i.e. (1.2) exists). Appealing to Lemma 2.1 we therefore
infer that

(6.2) ‖T̂‖L2(µ),L2(µ) <∞ and lim
r1,r2→0

T̂r1,r2(µ)(x) = 0 for µ-a.e. x ∈ C.

Take an arbitrary subset Ẽ ⊂ supp(µ) with µ(Ẽ) > 0. Our goal is

to show that there is a Lipschitz curve that intersects Ẽ in a set of
positive µ-measure. It is well known that this implies rectifiability –
For instance, by implying that the purely unrectifiable component of
supp(µ) has zero length, see e.g. Léger [L, p. 836].

Firstly, for each i ∈ Z, define

(6.3) Ei = {x ∈ Ẽ : 2−(i+1) ≤ Θ∗
µ(x) < 2−i}.
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The property (6.1) ensures that µ(Ẽ \⋃iEi) = 0.
With a density threshold established, we now introduce 0 < εi ≪ 1,

and put

Ei,j = {x ∈ Ei : sup
0<r1≤r2<1/j

|T̂r1,r2µ(x)| ≤
1

Ck

εi2
−i−3},

and

(6.4) Ei,j,m = {x ∈ Ei,j : sup
0<r<1/m

α(k)
µ (B(x, r)) ≤ 1

Ck

ε2i 2
−i−3},

for (j,m) ∈ N2. Here Ck > 1 is the constant appearing in Lemma 5.1.

The assumption that limr→0 α
(k)
µ (B(x, r)) = 0 for µ-a.e. x ∈ C,

together with (6.2), imply that for every i ∈ Z

µ
(
Ei \

⋃

(j,m)∈N2

Ei,j,m

)
= 0.

Next we show that if x ∈ Ei,j,m, then

(6.5)
2−(i+2)

Ck

≤ lim sup
r→0

δ̃µ(B(x, r)) ≤ 2−i+1Ck.

Indeed, let r ∈ (0, 1
30m

) be such that 2−(i+2) < δµ(B(x, r)) < 2−i+1.

Then α
(k)
µ (B(x, 30r)) < ε2i δµ(B(x, r)), and Lemma 5.1 is applicable

(εi ≪ 1). Consequently, Sx,r(εi) 6= ∅ and

2−(i+2)

Ck

≤ δ̃µ(B(x, r)) ≤ 2−i+1Ck,

so the lower bound in (6.5) follows. For the upper bound, recall that

Ck ≥ 2/λk and so we infer from (5.1) that lim supr→0 δ̃µ(B(x, r)) ≤
CkΘ

∗
µ(x) < Ck2

−i.
Next, we introduce θi ∈ (0, 1) with θi ≪ 1. Given n ∈ Z+, we define

the sets Ei,j,m,n as

Ei,j,m,n =
{
x ∈ Ei,j,m :

2−(i+2)

Ck

(1 + θ2i )
n ≤ lim sup

r→0
δ̃µ(B(x, r))

<
2−(i+2)

Ck
(1 + θ2i )

n+1
}
.

Fixing a sufficiently large integer N (depending on Ck and θi), we
obtain from (6.5) the following decomposition:

Ei,j,m =
N⋃

n=0

Ei,j,m,n.
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Our final step is to further decompose Ei,j,m,n. For p ∈ N, set

Ei,j,m,n,p =

{
x ∈ Ei,j,m,n : sup

0<r≤1/p

δ̃µ(B(x, r)) ≤ 2−(i+2)

Ck
(1 + θ2i )

n+2

}
.

Clearly,

Ei,j,m,n =
⋃

p∈N
Ei,j,m,n,p.

Select Ẽi,j,m,n,p ⊂ Ei,j,m,n,p satisfying Ẽi,j,m,n,p∩Ẽi′,j′,m′,n′,p′ = ∅ when-
ever (i, j,m, n, p) 6= (i′, j′, m′, n′, p′) but still

µ

(
Ẽ \

⋃

i,j,m,n,p

Ẽi,j,m,n,p

)
= 0.

Now fix i, j,m, n, p with µ(Ẽi,j,m,n,p) > 0. For each density point z

of Ẽi,j,m,n,p choose r <
1
90
min(1/j, 1/k, 1/p, 1/30m) satisfying

(6.6)
2−(i+2)

Ck
(1 + θ2i )

n−1 ≤ δ̃µ(B(z, r)) ≤ 2−(i+2)

Ck
(1 + θ2i )

n+2,

and

(6.7) µ(B(z, 10r) \ Ẽi,j,m,n,p) <
1

λkCk
εiµ(B(z, r)).

Consider the measure µ̃ := 1
δµ(B0)

µ, where B0 is a ball in Sz,r(εi)

(recall that Sz,r(εi) 6= ∅). Our goal will be to apply Main Lemma 6.1
to the measure µ̃ with ball B0 and with F taken to be a compact subset

of 10B0 ∩ Ẽi,j,m,n,p with µ(10B0∩ Ẽi,j,m,n,p\F ) arbitrarily small. Let us
verify each of the assumptions of the lemma in turn:
(a). By definition δµ̃(B0) = 1. Since B0 ∈ Sz,r(εi) it follows that

αµ(30B0) ≤ εiδµ(B0) and therefore αµ̃(30B0) ≤ εi.
Next we proceed to check that µ̃(10B0\F ) < εir0. Provided µ(10B0∩

Ẽi,j,m,n,p\F ) is small enough, (6.7) and the definition of Sz,r(εi) ensure
that

µ(10B0 \ F ) <
1

Ckλk
εiµ(B(z, r)) ≤ εiµ(B0),

which is the same as µ̃(10B0 \ F ) ≤ εir0.
(b). Fix x ∈ F and 0 < r′ ≤ 90r0. We need to show that

(6.8) δ̃µ̃(B(x, r′)) ≤ 1 + θi.
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But since r′ < 1/p

δ̃µ(B(x, r′)) ≤ 2−(i+2)

Ck
(1 + θ2i )

n+2 ≤ (1 + θ2i )
3δ̃µ(B(z, r))

≤ (1 + θ2i )
3δµ(B0) ≤ (1 + θi)δµ(B0),

where (6.6) was used in the second inequality, the third inequality

follows from definition of δ̃µ, and the final inequality uses that θi ≪ 1.
The inequality (6.8) is proved.
The assumptions (c) and (e) hold since for all x ∈ F ,

sup
0<r1≤r2<1/j

|T̂r1,r2µ(x)| ≤
2−i−3

Ck
εi and sup

0<r<1/m

α(k)
µ (B(x, r)) ≤ 2−i−3

Ck
ε2i ,

while δµ(B0) ≥ 1
Ck
2−i−2.

(d) Finally, since δµ(B0) ≥ 2−i−2

Ck
, we have that ‖T̃µ̃,rf‖L2(µ̃),L2(µ̃) ≤

2i+2Ck‖Tµ‖L2(µ)→L2(µ) for every f ∈ L2(µ), so assumption (d) holds
with M replaced by Mi = 2i+2Ck‖Tµ‖L2(µ)→L2(µ).
Therefore we have checked that the assumption of Main Lemma 6.1

hold with εi, θi andMi. Provided that εi and θi are sufficiently small in
terms of max{1,Mi}, with εi much smaller than θi, we infer that there

is a Lipschitz graph that intersects Ẽ in a set of positive measure. �

6.2. Proof of Theorem 1.1. In this section, we indicate how Theo-
rem 1.1 follows from Theorem 1.5 by using Corollary 1.4.

Proof of Theorem 1.1. Since µ is a finite measure satisfying (1.1), then
supp(µ) has σ-finite length. We therefore infer from Corollary 1.4 we
may write supp(µ) = F ∪ ⋃j Ej , where H1(F ) = 0, H1(Ej) < ∞,

and, with µj = µ|Ej
, the Huovinen transform is bounded in L2(µj).

On the other hand, Theorem A ensures that limr→0 α
(k)
µ (B(x, r)) = 0

for µ-almost everywhere. From this it is a routine matter to see that

limr→0 α
(k)
µj (B(x, r)) = 0 for µj-almost every density point x of µj . But

now we may apply Theorem 1.5 with the measure µj. Therefore µ, as
a countable union of rectifiable measures, is rectifiable. �

7. Construction of the Lipschitz graph for the proof of

the Main Lemma

Fix positive quantities δ, ε, θ and α that will be determined later,
satisfying log ε≪ log θ ≪ logα≪ log δ ≪ −1.
Throughout this section we will assume that µ satisfies assumptions

(a), (b) and (c) of Main Lemma 6.1 with these choices of ε and θ. The
roles of δ and α will be introduced momentarily.
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We will adapt a version of the construction developed by Léger in
[L] (adapting work by David-Semmes [DS] to the non-homogeneous
setting) involving a stopping time construction. The most significant
distinction between the assumptions we have made in Main Lemma
6.1 and those in [L] is that we do not know know that the measure
µ is flat (meaning that, say, αµ(B(x, r)) is small at every x ∈ F and
r < r0), but rather we only know that the measure µ is spike-flat

(α
(k)
µ (B(x, r)) is small if x ∈ F and r < r0). Our main observation is

that, due to the initial flatness assumption on B0 (assumption (a) of
Lemma 6.1) within the stopping time region the measure must not only
be spike-flat but truly flat (this is the content of Lemma 7.7), and so
one can build an approximate Lipschitz graph (Proposition 7.17) as in
the David-Semmes-Léger scheme.
Without loss of generality, we put x0 = 0, r0 = 1.

Lemma 7.1. For every x ∈ F and r ∈ (0, 30),

δµ(B(x, r)) . 1.

Proof. The statement is clear if δµ(B(x, r)) ≤ 1, so we may assume

otherwise. By assumption (c), α
(k)
µ (B(x, r)) ≤ ε2 ≤ ε2δµ(B(x, r)), and

the result follows from Lemma 5.1 due to assumption (b). �

7.1. The stopping time region. We set B0 = B(0, 1) and D0 to be
a line such that

αµ,H1
|D0

(30B0) ≤ 2ε.

Without loss of generality, we may (and will) assume thatD0 = R×{0}.
Remark 7.2. An application of Lemma 4.2 tells us that since δµ(B0) =
1, we have that

δµ(30B0) ≈ 1.

Definition 7.3. We define the region Stotal as the collection of pairs
(x, t) ∈ F ∩ B0 × (0, 20) satisfying the following two properties

(1) δµ(B(x, t)),≥ δ and
(2) there exists D ∈ Gx with αµ,D(B(x, t)) ≤ ε

and ∠(D,D0) ≤ α.

Lemma 7.4. There is a constant C > 0 such that

(F ∩B0)× [C
√
ε/α, 12] ⊂ Stotal.

Proof. Fix z ∈ F ∩B0. From assumption (c), α
(k)
µ (B(z, 20)) < ε2, while

trivially, δµ(B(z, 20)) & δµ(B0) & 1. Consequently, part (2) of Lemma
4.2 yields that there is a constant C > 0 such that δµ(B(z, s)) & 1
whenever s ∈ [C

√
ε, 12].
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Now further assume that s ∈ (q
√
ε

α
, 12] for some q > 1 to be deter-

mined momentarily. Since α
(k)
µ (B(z, 4s)) . ε2δµ(B(z, s)) and αµ,D0(30B0) .

εδµ(30B0), Lemma 4.59 yields that for some D′ ∈ Gx

αµ,D′(B(z, s)) . ε2δµ(B(z, s)) < εδµ(B(z, s))

where ∠(D0, D
′) .

√
ε1
s
. α/q < α, provided that q is chosen appro-

priately. �

Definition 7.5. For x ∈ F ∩ B0, we set

h(x) = sup{t ∈ (0, 12] : (x, t) 6∈ Stotal};
and

S = {(x, t) ∈ Stotal : t ≥ h(x)}.
Notice that if (x, t) ∈ S, then (x, t′) ∈ S for t′ > t, making S a

stopping time region.
On occasion we will abuse notation and write, for a ball B, B ∈

S (respectively B ∈ Stotal) instead of (c(B), r(B)) ∈ S (respectively
(c(B), r(B)) ∈ Stotal).
We record a restatement of Lemma 7.4 that will be used later on.

Remark 7.6. For x ∈ F ∩ B0, h(x) .
√
ε/α.

7.2. Properties of the Stopping Time Region. It will be conve-
nient to set

λ =

√
ε

δ
.

Lemma 7.7. Let (x, r) ∈ S and p ∈ π(B(x, r)). Let D ∈ Gx satisfy
that ∠(D,D0) ≤ α and αµ,H1

|D
(B(x, r)) ≤ ε. Then we have that

F ∩ π−1(B(p, r)) ⊂ B(x, 3r) ∩
{
y ∈ C : d(y,D) . λ · r

}
.

Proof. Fix z ∈ π−1(B(p, r)) ∩ F and set r̃ = max(r, |x − z|). Since
(x, r̃) ∈ S, we have that δµ(B(x, r̃)) ≥ δ and there exists D′ ∈ Gx such
that

αµ,D′(B(x, r̃)) ≤ ε .
ε

δ
δµ(B(x, r̃)) and ∠(D′, D0) ≤ α.

But then δµ(B(z, 2r̃)) & δ from which part 2 of Lemma 4.2 ensures

that δµ(B(z, r̃)) & δ (note here that, as z ∈ F , α
(k)
µ (B(z, 2r̃)) .

ε2

δ
δµ(B(z, 2r̃))). From here, Lemma 7.1 ensures that δµ(B(z, r̃)) &

9Applied with the role of δ played by a constant & 1, and B(x, r) = 30B0 so
that B(z, 4s) ⊂ 2B(x, r).
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δ · δµ(B(x, r̃)), and, since B(z, r̃) ⊂ B(x, 2r̃) we may apply Lemma
4.310 to conclude that

(7.1) dist(z,D′) .

√
ε

δ
r̃.

We next claim that r̃ ≤ 3r. If |x− z| > 3r, then since the line D′ ∈ Gx

satisfies ∠(D′, D0) ≤ α, and dist(π(x), π(z)) < 2r, it follows that

r̃ = |x− z| . dist(z,D′),

but given (7.1) this is absurd, and so r̃ ∈ [r, 3r]. In particular, we
have proved that π−1(B(p, r)) ⊂ B(x, 3r). Finally, Corollary 4.4 en-
sures that if we consider instead of D′ the line D (which satisfies

αµ,D(B(x, r)) ≤ ε . ε
δ
δµ(B(x, r))), then ∠(D,D′) .

√
ε
δ
, and the result

follows. �

Lemma 7.8. Suppose B,B′ ∈ S, L > 1, LB ∩ LB′ 6= ∅, and r(B′) ≤
r(B). Let DB and DB′ be lines in Gc(B) and Gc(B′) respectively satisfying
that αµ,DB

(B) ≤ ε and αµ,DB′ (B
′) ≤ ε. Then for all y ∈ LB′ ∩DB′,

dist(y,DB) . L2λ · r(B).

We will require the following simple result.

Lemma 7.9. Fix Λ > 1. Suppose that B,ΛB ∈ S. Let DB and
DΛB be lines in Gc(B) satisfying that αµ,D(B) ≤ ε and αµ,ΛD(ΛB) ≤ ε,
respectively. Then dist(y,DΛB) . λΛr(B) for every y ∈ B ∩DB.

Proof. Due to Lemma 7.1, δµ(B) & δ · δµ(ΛB), so application of Corol-
lary 4.4 (with B playing the role of B(z, s) and ΛB playing the role of
B(x, r)) readily yields that

min{r(B), dist(y,DΛB)} . λ · Λr(B) for every y ∈ DB ∩ B.
But since c(B) lies on DΛB, we obtain dist(y,DΛB) . r(B) for y ∈ B,
and the lemma is proved. �

Proof of Lemma 7.8. If 3LB /∈ S then Lr(B) ≥ 3 and we can replace
L by L′ ≤ L where 3L′B ∈ S and L′B ∩ L′B′ 6= ∅. (Recall that B,B′

have their centres on B0.) We therefore assume that 3LB ∈ S.

Now, fix Λ ≈ L r(B)
r(B′)

such that both 3LB ⊃ ΛB′ and ΛB′ belongs

to S (observe here that r(3LB) ≈ r(ΛB′)). We first apply Lemma 7.9
twice to conclude that

(7.2) dist(y,D3LB) . Lλr(B) for all y ∈ DB ∩B
10with γ replaced by Cε/δ, σ = H1

|D′ , and ν a spike measure such that

αµ,ν(B(z, r̃)) < ε2 . ε
δ δµ(B(z, r̃))



PRINCIPAL VALUE INTEGRALS 25

and

(7.3) dist(y,DΛB′) . Lλr(B) for all y ∈ DB′ ∩B′.

But now, since both 3LB and ΛB′ belong to S, have comparable radii,
and 3LB ⊃ ΛB′, we may use Corollary 4.411, from where

dist(y,D3LB) . Lλr(B) for all y ∈ DΛB′ ∩ ΛB′.

In combination with (7.3), the previous inequality ensures that for
every y ∈ DB′ ∩ B′, there exists z ∈ D3LB ∩ 3LB such that d(y, z) .
Lλr(B). Recalling that DB′ , DΛB′ and D3LB are lines, it follows that
for every y ∈ DB′ ∩ LB′, there exists z ∈ D3LB ∩ 4LB such that
d(y, z) . L2λr(B). Now we infer from (7.2) that there exists w ∈ DB

with d(z, w) . L2λr(B), and the result follows. �

Although B0 is not necessarily in S (0 may not be in F ), we still
have the following results

Corollary 7.10. Suppose that L > 1 and B ∈ S, and let DB ∈ Gc(B)

satisfying αµ,DB
(B) ≤ ε. Then

dist(y,D0) . L2λ for every y ∈ LB ∩DB

and therefore

∠(DB, D0) .
L2

r(B)
λ.

Proof. By part (2) Lemma 4.2, µ(B(0, C
√
ε)) &

√
ε so F∩B(0, C

√
ε) 6=

∅ (see assumption (a) of Main Lemma 6.1). Pick DB1 ∈ Gx satisfying
αµ,DB1

(B1) ≤ ε. Therefore we can choose a ball B1 = B(x, 10) ∈ S

with x ∈ F and |x| . √
ε. We infer from Lemma 7.8 that

dist(y,DB1) . L2λ for all y ∈ LB ∩DB.

But then it follows from Corollary 4.4 that dist(y,DB1) .
√
ε for all

y ∈ B0 ∩D0, and the Corollary follows. �

The following Corollary follows from Lemma 7.7 in an analogous
manner to how the previous result follows from Lemma 7.8 (i.e. by
finding a point x ∈ F within a distance .

√
ε from 0). Moreover let

us recall that I0 = (−1, 1).

Corollary 7.11. One has

F ⊂
{
dist(·, D0) . λ

}
.

11Here we appeal to Lemma 7.1, which ensures that δµ(ΛB
′) & δδµ(3LB)
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7.3. Partition of the stopping scales. We define the following three
disjoint subsets of F ∩B0:

Z = {x ∈ F ∩ B0 : h(x) = 0},
F1 = {x ∈ F ∩B0 \ Z : δµ(B(x, h(x))) ≤ δ}, and

F2 =
{
x ∈ F ∩B0 \ (Z ∪ F1) :

there is D ∈ Gx with ∠(D,D0) ≥ α
and αµ,D(B(x, h(x))) ≤ ε

}
.

Lemma 7.12. One has

F = Z ∪ F1 ∪ F2.

Proof. Fix x ∈ F\(Z∪F1). Therefore h(x) > 0 and δµ(B(x, h(x))) > δ.
Moreover, (x, 4h(x)) ∈ Stotal so there exists D ∈ Gx with

αµ,D(B(x, 4h(x))) ≤ ε .
ε

δ
δµ(B(x, 4h(x))).

Since α
(k)
µ (B(x, 4h(x))) . ε2

δ
δµ(B(x, 4h(x))) and δµ(B(x, h(x))) & δµ(B(x, 4h(x)))

(the latter inequality holding, for instance, by part (1) of Lemma 4.2),
we have from Lemma 4.5 and Lemma 7.1 that there exists D′ ∈ Gx

such that

(7.4) αµ,D′(B(x, h(x))) .
ε2

δ2
δµ(B(x, h(x))) .

ε2

δ2
.

Notice that if (x, h(x)) /∈ Stotal, then by the definition of Stotal (Defi-
nition 7.3) we have that ∠(D′, D0) > α and therefore x ∈ F2. Con-
sequently, we may assume that (x, h(x)) ∈ Stotal. By the definition of
h(x) there exists rj → h(x) with rj < h(x) such that the balls B(x, rj)
fail to satisfy one of the properties (1) or (2) in the definition of Stotal.
But if a countable number of the balls B(x, rj) were to satisfy that

δµ(B(x, rj)) < δ then δµ(B(x, h(x))) ≤ δ, which is not the case. Sim-
ilarly, if αµ(B(x, rj)) ≥ ε for infinitely many j then by continuity of
the alpha numbers, see Lemma 3.3, we have αµ(B(x, h(x))) ≥ ε, con-
tradicting (7.4). Therefore there exist lines Dj through x and radii
rj → h(x) with rj < h(x), ∠(Dj , D0) > α, and αµ,Dj

(B(x, rj)) ≤ ε.
We may pass to a subsequence if necessary to obtain that Dj con-

verge (locally) to a line D̃ with ∠(D̃,D0) ≥ α. But then the con-
tinuity of the transportation coefficients (Lemma 3.3) ensures that
αµ,D̃(B(x, h(x))) ≤ ε, and hence x ∈ F2. �

Remark 7.13. An application of Corollary 4.4 ensures that if x ∈
F2 and D′ is any line in Gx for which αµ,D′(B(x, h(x))) ≤ ε, then
∠(D′, D0) ≥ α− Cτ ≥ α

2
.
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We shall show momentarily that Z lies in the zero set of a Lipschitz
continuous function. We will therefore want to show that the measure
of the sets F1 and F2 is small.

7.4. Regularization of h. The function h itself can be quite irregular,
so, as is standard, we proceed to introduce the functions d and D.

Definition 7.14. For x ∈ C, we set

d(x) = inf
(X,t)∈S

(|X − x| + t),

and for p ∈ D0,

D(p) = inf
x∈π−1(p)

d(x) = inf
(X,t)∈S

(d(π(X), p) + t).

Remark 7.15. Observe that

(1) the functions d and D are 1-Lipschitz functions and
(2) h(x) ≥ d(x) for every x ∈ F ∩ B0.

Lemma 7.16. We have that

Z = {x ∈ C : d(x) = 0} = {x ∈ F ∩ B0 : d(x) = 0}.
Proof. If x /∈ B0 ∩ F then d(x) > 0, so since d ≤ h on the closed set
F ∩ B0, we have

Z ⊂ {x ∈ C : d(x) = 0} = {x ∈ F ∩B0 : d(x) = 0}.
Next, we prove that if x ∈ C satisfies d(x) = 0 then h(x) = 0. If
d(x) = 0, then certainly x ∈ F ∩ B0. Fix τ > 0. We can find a
sequence of pairs (xj , τj) ∈ S with xj ∈ F , xj → x, and τj → 0 with
τj < τ for every j. In particular, (xj , τ) ∈ S for every j. Since for any
τ ′ ∈ (0, τ), δµ(B(xj , τ

′)) ≥ δ for sufficiently large j, it follows that that
δµ(B(x, τ)) ≥ δ.
Let Dj ∈ Gxj

be lines with αµ,Dj
(B(xj , τ)) ≤ ε and ∠(Dj, D0) ≤ α.

Appealing to Lemma 3.3, we obtain that (after passing to a subse-
quence if necessary) there exists D ∈ Gx with ∠(D,D0) ≤ α such that
αµ,D(B(x, τ)) ≤ ε. Since τ > 0 is arbitrary, the statement follows. �

7.5. The Lipschitz Mapping. The next step is to construct a Lip-
schitz mapping with Lipschitz constant . α whose graph is close to
points in F . Recall that I0 = (−1, 1).

Proposition 7.17. There exists a Lipschitz continuous function A :

R → R satisfying supp(A) ⊂ 3I0, ‖A‖Lip . α, such that, with Ã(p) =
(p,A(p)) and Γ = {A(p) : p ∈ R}, the following properties hold:

(1) |A′′(p)| . λ
D(p)

for any p ∈ R,
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(2) Γ ⊂
{
dist(·, D0) . λ

}
,

(3) If x ∈ F , then

|Ã(π(x))− x| . λ ·D(π(x)).

(In particular, Z ⊂ Γ.)
(4) If B(x, r) ∈ S and D ∈ Gx satisfies αµ,D(B(x, r)) ≤ ε, then for

every p ∈ π(B(x, r)),

dist(Ã(p), D) . λ · r.
Given the strong flatness property proved in Lemma 7.7 (along with

Lemma 7.8, which informally states that good approximating lines for
balls B ∈ S do not change much locally), the reader familiar with the
Léger scheme will likely find few obstacles in providing the proof of
Proposition 7.17 for themselves by modifying either [L] or Chapter 7
of [To5]. However, since there are some minor changes required, we
provide a relatively detailed treatment in Appendix B.

7.6. Density of µ under the projection to D0. Our next lemma
concerns the density of the projection of µ|F to D0. This is a key
property required to run the scheme of Tolsa which will show that the
set F2 has small measure. Set σ to be the Borel measure on R given
by

σ = π#(µ|F ), so σ(E) = µ(F ∩ π−1(E)) for a Borel set E ⊂ R.

Lemma 7.18. One has

(7.5) σ(B(p, r)) ≤ (1 + Cα2)2r, for p ∈ R and r ∈ (ε1/4D(p), 1).

Proof. Without loss of generality we may assume that p ∈ 10I0 (recall
that F ⊂ 10B0).

Case 1: r <
4
√
ε

100
.

Fix t = r/ 4
√
ε, so t > D(p) and there is x ∈ π−1(p) with d(x) <

t. Therefore we can find (X, s) ∈ S with |x − X| + s < t, and so
B(X, 3t) ∈ S. Notice that π(B(X, 3t)) ⊃ B(p, t), and so appealing to
Lemma 7.7,

F ∩ π−1(B(p, t)) ⊂ B(X, 6t) ∩
{
y ∈ C : dist(y,D) . λt

}

for a line D through X with ∠(D,D0) ≤ α.
Consequently, since r = ε1/4t, then F ∩ π−1(B(p, r)) is contained in

a strip of width C λ
ε1/4

r ≪
√
λr around a line D with ∠(D,D0) ≤ α.

Therefore, if z = π−1(p) ∩D, then F ∩ π−1(B(p, r)) ⊂ B(z, R) where

r ≤ R ≤
(
1 + α2 + C

√
λ
)
r ≤ (1 + Cα2)r.
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Since X ∈ F , assumption (b) in the Main Lemma ensures that

δ̃µ(B(X, t)) ≤ 1 + θ, and since (X, t) ∈ S, with t < 1/50, we have
that αµ(B(X, 30t)) ≤ ε. Since B(z, R) ⊂ B(X, 30t), Lemma 5.2 is
applicable with x replaced by X , r replaced by t, and B′ = B(z, R).
From the conclusion of this lemma it follows (recall that θ ≪ α2) that

δµ(B(z, R)) ≤ 1 + θ + Cε1/8,

so µ(B(z, R)) ≤ (1 + Cα2)2r, and the required statement follows.

Case 2: r ≥ 4
√
ε

100
. In this case we apply the argument above with the

role of the ball B(x, t) replaced by B(0, 1). We have from Corollary

7.11 that F ⊂ 10B0 ∩ {dist(·, D0) .
√
λD(p)}. On the other hand,

αµ(30B0) ≤ ε, and, although 0 need not belong to F , the fact that

δµ(B0) = 1 implies δ̃µ(B0) ≤ 1, which suffices to apply Lemma 5.2.
(One can actually get a bound that only depends on λ (and not α) in
this case, but we will not need this improvement.) �

8. Size of F1

The proof of the following result can be found as Proposition 3.19 in
[L] or Lemma 7.33 in [To5].

Proposition 8.1. One has

µ(F1) . δ ≪ 1.

Every point x ∈ F1 is the centre of a ball B(x, h(x)) which is of low
density (≤ δ), but x is also lies very close to the Lipschitz graph Γ (in
the sense that dist(x,Γ) . λd(x) . λh(x) ≪ h(x) for every x ∈ F1).
From these observations the Besicovitch covering lemma readily allows
us to establish Proposition 8.1.

9. The size of F2

Given Proposition 8.1, our goal is now to show that µ(F2) is also
small.
Our goal will be to verify the following proposition.

Proposition 9.1. Provided α≪ 1 and log ε ≪ logα,

µ(F2) ≤
√
α.

We start by recording the following estimate that can be found as
Lemma 10.1 in [To3] or Lemma 7.34 of [To5]. See also Section 5 of [L].
We give a self-contained proof.
Set ‖f‖2L2(R) =

∫
R
|f |2dm1, where m1 is the Lebesgue measure on R.
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Lemma 9.2. We have

µ(F2) . α−2‖A′‖2L2(R).

Proof. Suppose x ∈ F2, so δµ(B(x, h(x))) ≥ δ. Recall from Remark
7.13 we have that any D ∈ Gx for which

αµ,D(B(x, h(x))) ≤ ε satisfies ∠(D,D0) ≥ α/2.

Take a sequence of radii rn → h(x), rn > h(x) such that the associated
lines Dn ∈ Gx satisfying αµ,Dn(B(x, rn)) ≤ ε converge to a line D such
that αµ,D(B(x, h(x))) ≤ ε holds (and so ∠(D,D0) ≥ α/2).
Pick p ∈ π(B(x, h(x))). We claim that

(9.1) dist(Ã(p), D) . λh(x) ≪ α · h(x).
To see this, note that B(x, rn) ∈ S. Then by property (4) of Proposi-
tion 7.17,

dist(Ã(p), Dn) . λrn,

letting n→ ∞ we obtain the claimed inequality.
Choose p, q ∈ π(B(x, h(x))), with |p − q| & h(x). Then since

∠(D,D0) & α,

α · h(x)
(9.1)
. |A(p)−A(q)| .

∫

I(π(x),h(x))

|A′| dm1,

where the second inequality is a straightforward consequence of the
fundamental theorem of calculus. Using the Cauchy-Schwarz inequality
and Lemma 7.1, we therefore obtain that

(9.2) α2 · µ(B(x, 30h(x))) . α2h(x) .

∫

I(π(x),h(x))

|A′|2 dm1.

On the other hand, since (x, 2h(x)) ∈ S, it is immediate from Lemma
7.7 that if y ∈ F and B(x, 6h(x)) ∩B(y, 6h(y)) = ∅, then

I(π(x), 2h(x)) ∩ I(π(y), 2h(y)) = ∅.

From the Vitali covering lemma, we choose a subcollection of the balls
B(x, 6h(x)), say B(xj , 6h(xj)), that are pairwise disjoint, and satisfy⋃

j B(xj , 30h(xj)) ⊃ F2. But then the intervals I(π(xj), h(xj)) are

pairwise disjoint, so by summing (9.2) we obtain

α2µ(F ) .

∫

3I0

|A′|2 dm1.

The result is proved. �
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10. Calderón-Zygmund operators on Lipschitz graphs

with small constant

Like in Tolsa’s work [To4], the behavior of Calderón-Zygmund oper-
ators on Lipschitz graphs with small Lipschitz constant plays an im-
portant role in our work. Here we carry out a suitable adaptation to
the Huovinen kernels. The main point is that, on a Lipschitz graph
with small constant, the normal component of the Huovinen kernel be-
haves like a small perturbation of the normal component of the Cauchy
kernel.
Recall that

K⊥
k (z) =

ℑ(zk)
|z|k+1

for z ∈ C.

Throughout this section, we will denote by A : R → R a com-
pactly supported Lipschitz continuous function with ‖A′‖∞ ≤ 1. We

set Ã(t) = (t,A(t))(= t+ iA(t) ∈ C), and Γ = {Ã(t) : t ∈ R}.
The goal of the section is to derive the following result:

Theorem 10.1. There exists constants C, c > 0 and α0 > 0 depending
on k such that if ‖A′‖∞ ≤ α0, and diam(supp(A)) . 1, then

(1) for every p ∈ (1,∞), the principal value operator associated K⊥
k

has operator norm at most Cp‖A′‖∞, and
(2) we have the lower bound

(10.1)

∫

Γ

∣∣∣P.V.
∫

Γ

K⊥
k (z−ω)dH1(ω)

∣∣∣
2

dH1(z) ≥ c‖A′‖2L2(R)−C‖A′‖4∞.

For t ∈ R, we shall set

J(Ã)(t) =
√

1 +A′(t)2,

so that for any f ∈ L1(Γ),

(10.2)

∫

C

f(ω)dH1
|Γ(ω) =

∫

R

f(Ã(t))J(Ã)(t) dm1(t),

Using (10.2), we shall prove bounds of the the operator norm in
L2(Γ) of the Calderón-Zygmund operator

T⊥(fH1
|Γ)(z) = P.V.

∫

C

K⊥
k (z − ω)f(ω)dH1

|Γ(ω)

by first considering the principal value operator norm in L2(R) of the
operator

TA(g)(t) = P.V.

∫

R

K⊥
k (Ã(t)− Ã(s))g(s) dm1(s), t ∈ R.
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The following theorem is a well known result regarding Calderón com-
mutators, see [Dav2, Chapter 2] for an exposition including several
approaches to how it can be proved.

Theorem 10.2 (Boundedness of Calderón commutators). There exists
C1 > 0 such that for every p ∈ (1,∞) and ℓ ∈ N, the CZO acting on
Lp(R) with kernel

K(t, s) =
1

t− s

(A(t)−A(s)

t− s

)ℓ

is a bounded principal value operator in Lp(R) with norm .p C
ℓ
1‖A′‖ℓ.

We next recall an important tool in our argument, which is a special
case of [To4, Theorem 1.3], relying ultimately on a Fourier analytic
argument.

Theorem 10.3. There exists α0 > 0 such that if ‖A′‖∞ ≤ α0, then∫

R

∣∣∣P.V.
∫

R

A(t)−A(s)

(t− s)2
dm1(s)

∣∣∣
2

dm1(t) & ‖A′‖2L2(R).

We now examine the difference between normal components of the
Huovinen and Cauchy transforms. For |s| < |t|, we may expand the
kernel

K⊥
k (t+ is) =

ℑ[(t+ is)k]

(t2 + s2)(k+1)/2
=

∑

ℓ∈N,ℓ odd

ck,ℓ
sℓ

tℓ+1
,(10.3)

where ck,ℓ ∈ R satisfy

(10.4) ck,1 = k and
∑

ℓ

|ck,ℓ|
(1
2

)ℓ
.k 1.

Consequently, we see that

(10.5) K⊥
k (Ã(t)−Ã(s)) = k

A(t)−A(s)

(t− s)2
+

∑

ℓ≥3,ℓ odd

ck,ℓ
(A(t)−A(s))ℓ

(t− s)ℓ+1
.

Now, if ‖A′‖∞ ≤ α0 for a small enough α0, the kernel

Ktail(t, s) =
∑

ℓ≥3,ℓ odd

ck,ℓ
(A(t)−A(s))ℓ

(t− s)ℓ+1

is a Calderón-Zygmund kernel, and Theorem 10.2 ensures that, for any
p ∈ (1,∞), the associated principal value operator is bounded in Lp(R)
with norm .p,k ‖A′‖3∞. Therefore

(a) the principal value operator with kernel K⊥
k (Ã(t) − Ã(s)) has

Lp(R) operator norm .k,p ‖A′‖∞,
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(b) employing a simple localization argument yields that
∫

R

∣∣∣
∫

R

Ktail(t, s) dm1(s)
∣∣∣
2

dm1(t) . ‖A′‖6∞ diam(supp(A)),

(c) if ‖A′‖∞ is small enough and diam(supp(A)) . 1, then part
(b) and Theorem 10.3 ensures that there are constants C, c de-
pending on k such that

∫

R

∣∣∣
∫

R

K⊥
k (Ã(t)− Ã(s)) dm1(s)

∣∣∣
2

dm1(t) ≥ c‖A′‖2L2(R) − C‖A′‖6∞.

Finally, observe that |J(Ã)(t) − 1| = |
√
1 + |A′(t)|2 − 1| . |A′(t)|2.

Consequently, Theorem 10.1 now follows from the change of variable
formula (10.2), employing the bound on the operator norm (a) to bound
the errors accumulated from passing from R to Γ.

11. The main comparison estimates

Recall that our main goal is to prove Proposition 9.1. We therefore
assume that µ satisfies the assumptions of Main Lemma 6.1, and in-
troduce δ, ε, θ and α satisfying log ε ≪ log θ ≪ logα ≪ log δ ≪ −1, so
that the construction of Section 7 is valid.
For x ∈ C, set

ℓ(x) =
1

10
D(π(x)).

We recall that we set

λ =

√
ε

δ
,

so that (see (b) and (c) of Proposition 7.17)

(11.1) Γ ⊂ {x ∈ C : dist(x,D0) . λ} and

(11.2) F ⊂ {x ∈ C : dist(x, Ã(π(x))) . λℓ(x)}.
Denote for any measure ν

T⊥
ℓ(·),1ν(x) = T̂⊥

ℓ(x)ν(x)− T̂⊥
1 ν(x).

Put I0 = (−1, 1) ⊂ D0.
The goal of this section will be to prove the following result:

Proposition 11.1. There is a constant C > 0 such that, as long as
α≪ 1, and log λ≪ logα,

‖T⊥
ℓ(x),1(µ)‖L2(µ|F∩π−1(4I0)

) & ‖A′‖L2(R) − Cα2.
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We shall set ‖f‖2L2(Γ) =
∫
Γ
|f |2dH1.

Recall that, since ‖A′‖∞ . α, applying Theorem 10.1 yields

(11.3) ‖A′‖L2(R) − Cα2 . ‖P.V. T⊥H1
|Γ‖L2(Γ).

provided that α ≪ 1. Comparing this estimate with Proposition 11.1,
our goal is to (essentially) replace H1|Γ with by µ|F on the right hand
side of (11.3).

11.1. Localization estimates.

Lemma 11.2 (Localization lemma). For every p ∈ (1,∞),
∣∣∣‖T⊥(H1

|Γ)‖Lp(Γ) − ‖T⊥
ℓ(·),1(H1

|Γ)‖Lp(Γ∩π−1(4I0))

∣∣∣.p α
2.

Proof. We recall that supp(A) ⊂ π(3B0). Observe that
∣∣∣‖T⊥(H1

|Γ)‖Lp(Γ) − ‖T⊥(H1
|Γ)‖Lp(Γ∩π−1(4I0))

∣∣∣≤ ‖χΓ\π−1(4I0)T
⊥(H1

|Γ)‖Lp(Γ)

Take x ∈ Γ \ π−1(4I0) = D0 \ 4I0 (so π⊥(x) = 0), and we set

|T⊥(H1
|Γ)(x)| ≤

∫

y∈Γ

dist(y,D0)

|x− y|2 dH1(y) =

∫

y∈Γ∩π−1(3I0)

dist(y,D0)

|x− y|2 dH1(y)

.
1

(1 + |x|)2
∫

y∈Γ∩π−1(3I0)

dist(y,D0) dH1(y)
(11.1)
.

λ

(1 + |x|)2 .

Raising this inequality to the power p and integrating on D0 \ 4I0, we
obtain

‖χΓ\π−1(4I0)T
⊥(H1

|Γ)‖Lp(Γ) . λ.

For x = Ã(t) for t ∈ 4I0, write

|T⊥(H1
|Γ)(x)− T⊥

ℓ(x),1(H1
|Γ)(x)| ≤ |S(x)|+ |T̂⊥

1 (H1
|Γ)(x)|,

with12

S(x) =

∫ (
1−Ψ

( |Ã(t)− Ã(s)|
D(t)/10

))ℑ(Ã(t)− Ã(s))k

|Ã(t)− Ã(s)|k+1
J(Ã)(s) dm1(s),

where J(Ã) =
√

1 + |A′|2, x = Ã(t), y ∈ Ã(s), with t, s ∈ R.

12The integral S is a principal value integral, but we shall suppress the P.V.
notation in principal value integrals whenever it is clear from context (in order to
save line space).
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The estimate for second term is straightforward:

|T̂⊥
1 (H1

|Γ)(x)| .
∫

y∈Γ:
|y−x|≥1/2

|π⊥(x)− π⊥(y)|
|x− y|2 dH1(y)

(supp(A) ⊂ 3I0) .

∫

y∈Γ:
|y−x|≥1/2

|π⊥(x)|
|x− y|2 dm1(y) +

∫

y∈π−1(3I0)∩Γ
|x−y|>1/2

|π⊥(y)|
|x− y|2dH

1(y)

. dist(x,D0) +

∫

Γ∩π−1(3I0)

dist(y,D0)dH1(y)

(11.1) . dist(x,D0) + λ.

Therefore, using (11.1) once again

‖T̂⊥
1 (H1

|Γ)‖Lp(π−1(4I0)∩Γ) .
(∫

Γ∩4π−1(I0)

dist(x,D0)
pdH1(x)

)1/p
+λ . λ.

The estimate of S(x) will take more work. We split

S(x) =

∫ (
1−Ψ

( t− s

D(t)/10

))ℑ((Ã(t)− Ã(s))k)

|Ã(t)− Ã(s)|k+1
dm1(s)

+

∫ (
Ψ
( t− s

D(t)/10

)
−Ψ
( |Ã(t)− Ã(s)|

D(t)/10

))ℑ((Ã(t)− Ã(s))k)

|Ã(t)− Ã(s)|k+1
dm1(s)

+

∫ (
1−Ψ

( |Ã(t)− Ã(s)|
D(t)/10

))ℑ({Ã(t)− Ã(s)}k)
|Ã(t)− Ã(s)|k+1

(J(Ã)(s)− 1) dm1(s)

= S1(x) + S2(x) + S3(x).

Notice that

‖J(Ã)− 1‖p . ‖A′‖2∞.
Consequently, using the Lp boundedness of T⊥ on Lipschitz graphs
(Theorem 10.1) we get

‖S3‖p ≤ α2.

Now we focus on S2. First observe that, since α≪ 1,

|t− s| ≤ |Ã(t)− Ã(s)| ≤ 2|t− s|.
Since Ψ(z) = 0 if |z| ≤ 1/2 and Ψ(z) = 1 if |z| ≥ 1, we deduce that

Ψ
( t− s

D(t)/10

)
−Ψ
( |Ã(t)− Ã(s)|

D(t)/10

)
= 0
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if |t− s| ≤ D(t)/40 or |t− s| ≥ D(t)/5. Additionally, the mean value
theorem ensures that

∣∣∣Ψ
( t− s

D(t)/10

)
−Ψ
( |Ã(t)− Ã(s)|

D(t)/10

)∣∣∣≤ Cα|t− s|
D(t)

.

Consequently,

|S2(x)| .
∫

D(t)/40≤|t−s|≤D(t)/5

α|t− s|
D(t)

|ℑ((Ã(t)− Ã(s))k)|
|t− s|k+1

dm1(s) . α2,

and therefore

‖S2‖p . α2.

We focus now on S1(x). Recall from (10.3) that

K⊥
k (Ã(t)− Ã(s)) =

∑

ℓ∈N,ℓ odd

ck,ℓ
(A(t)−A(s))ℓ

(t− s)ℓ+1
.

By the second order Taylor formula,

A(t)−A(s) = A′(t)(t− s) + A′′(z)
2

(t− s)2 for some z ∈ [t, s].

For s ∈ B(t, D(t)/5), we have that D(z) ≈ D(t) ≈ D(s), and so the
second derivative estimate given in part 1 of Proposition 7.17 (and
recalling the the definition of λ) yields that

∣∣∣A
′′(z)

2
(t− s)2

∣∣∣. λ
(t− s)2

D(t)
.

Now, employing the inequality |(a + b)ℓ − aℓ| ≤ 2ℓbmax(|a|, |b|)ℓ−1 we
arrive at

|(A(t)−A(s))ℓ −A′(t)ℓ(t− s)ℓ| ≤ Cℓαℓ−1λ
|t− s|ℓ+1

D(t)
,

where we have used that λ|t−s|
D(t)

≤ α. Next, we notice that for any κ > 0,

∫

R\B(t,κ)

[
1−Ψ

(t− s

D(t)

)]A′(t)ℓ

t− s
dm1(s) = 0,

while
∫
R

[
1−Ψ

(
t−s
D(t)

)]
dm1(s) . D(t). Consequently,

∣∣∣
∫

R\B(t,κ)

[
1−Ψ

(t− s

D(t)

)](A(t)−A(s))ℓ

(t− s)ℓ+1
dm1(s)

∣∣∣. Cℓαℓ−2λ.
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Therefore, using (10.4), we have that since α ≪ 1,

|S1(x)| = lim
κ→0

∣∣∣
∫

R\B(t,κ)

(
1−Ψ

( t− s

D(t)/10

))
K⊥

k (Ã(t)− Ã(s)) dm1(s)
∣∣∣

.
∑

ℓ∈N,ℓ odd

|ck,ℓ|Cℓλαℓ−1 . λ≪ α2.

From here, and joining the previous estimates we conclude that

‖S‖Lp(Γ∩π−1(4I0)) . α2.

The lemma follows. �

11.2. The main comparison estimates. Let η̃ : [0,∞) → R be a
smooth non-increasing function with ‖η̃‖1 = 1/2 such that supp η̃ ⊂
[0, 1] and η̃ equals 1 on [0, 1/4]. For p > 0, we denote

ηp(t) =
1

p
η̃

( |t|
p

)
for t ∈ R.

Therefore ‖ηp‖1 = 1.
We wish to show that σ = π#µ|F is close to a constant multiple of

the Lebesgue measure, at least within 8I0. In order to accomplish this,
we introduce the function g : R → R given by

g(t) = η√λD(t) ∗ σ.

Observe from (7.5) that we can rudely estimate

(11.4) ‖g‖∞ ≤ 3.

We will aim to prove more refined Lp estimates on the function g, with
(7.5) our primary tool.
We will make use of the following elementary bound which appears

as [To3], Lemma 10.3 (the proof merely uses of the fact that D is a
Lipschitz continuous function).

Lemma 11.3. For all t, s ∈ R,

|η√λD(t)(t− s)− η√λD(s)(t− s)| .
√
λ

D(s)
χB(s,C

√
λD(s))(t).

The next lemma is another estimate found in [To3], and is a simple
consequence of (7.5). (We recall that the proof of (7.5) used properties
of the transportation coefficients, and was necessarily quite different
from the proof in [To3].)



38 BENJAMIN JAYE AND TOMÁS MERCHÁN

Lemma 11.4. If ε and θ have been chosen small enough with respect
to α, then we have

(11.5) 0 ≤ g(t) ≤ 1 + Cα2 for all t ∈ R,

and

(11.6) ‖χ8I0(g − 1)‖2 . α.

Proof. The lemma follows from integrating (7.5). For t ∈ R, let ψ :
[0,∞) → R be defined by ψ(s) = η√λD(t)(s) and we denote σ =

π#(µ|F ).
Observe that

g(t) = −
∫ √

λD(t)

√
λD(t)/4

σ(B(t, r))ψ′(r) dm1(r),

where we have used that supp(ψ′) ⊂ [
√
λD(t)/4,

√
λD(t)]. Conse-

quently, since 4
√
ε≪

√
λ, from (7.5) (and that ψ is monotone on [0,∞)),

we infer that

|g(t)| ≤ (1 + Cα2)

∫ √
λD(t)

√
λD(t)/4

2r|ψ′(r)| dr ≤ 1 + Cα2.

The inequality (11.5) is proved. We next will show that

(11.7) ‖χ8I0(g − 1)‖1 . α2.

To this end, we will prove

(11.8)

∫

8I0

g(t) dm1(t) ≥ (1− C
√
λ)m1(8B0 ∩ R).

To verify (11.8), first observe that since D(t) ≤ 9 for all t ∈ π(8B0),
we have

∫

(8+9
√
λ)I0

g(t) dm1(t) =

∫

(8+9
√
λ)I0

η√λD(t) ∗ σ(t) dm1(t)

≥
∫

8I0

∫

R

η√λD(t)(t− s) dm1(t) dσ(s).

Using Lemma 11.3,

|η√λD(t)(t− s)− η√λD(s)(t− s)| . 1

D(s)
χB(s,C

√
λD(s))(t).
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Combining these two inequalities results in
∫

(8+9
√
λ)I0

g(t) dm1(t) ≥
∫

q∈8I0

∫

R

η√λD(s)(t− s) dm1(t) dσ(s)

−
∫

8I0

m1(B(s, C
√
λD(s)))

D(s)
dσ(s)

≥ (1− C
√
λ)σ(8I0) ≥ (1− C

√
λ)m1(8I0).

In the final inequality we have used that

σ(8I0) ≥ µ(8B0) = 16 · δµ(8B0) ≥ 16(1−C
√
ε)δµ(B0) = 16(1− C

√
ε),

where part (2) of Lemma 4.2 has been used in the inequality. The in-
equality (11.8) now follows from the fact that ‖g‖∞ ≤ 3 (recall (11.5)).
But now, for suitable constant C > 0,
∫

8I0

|1 + Cα2 − g(t)| dm1(t)
(11.5)
=

∫

8I0

((1 + Cα2)− g(t)) dm1(t)

≤ (1 + Cα2)m1(8I0)−
∫

8I0

g(t) dm1(t) ≤ (Cα2 + C
√
λ)m1(8B0),

and hence ∫

8I0

|1− g(t)| dm1(t) ≤ (Cα2 + C
√
λ)m1(8I0),

achieving (11.7) as λ≪ α2. Finally, recalling (11.4),
∫

8I0

|1− g(t)|2 dm1(t) ≤ (1 + ‖g‖∞)

∫

8I0

|1− g(t)| dm1(t) . α2

proving (11.6). �

Going forward, will be convenient to make three definitions:

Definition. (1) Denote by P : C → Γ the mapping

P (x) = Ã(π(x)) for x ∈ C.

(2) Denote by h : Γ → R the function

h(x) =
g(π(x))

JÃ(π(x))
, for x ∈ Γ.

(3) Define the Borel measure µ̃ on C by

µ̃ = µ|F ,

so that σ is the pushforward of µ̃ under the projection π.
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From these definitions we have that, for a Borel set E ⊂ 10I0 and a
Borel function f : C → R,
∫

π−1(E)

f ◦ P dµ̃ =

∫

E

f ◦ Ã dσ and

∫

E

g dm1 =

∫

π−1(E)∩Γ
h dH1.

We will use these identities quite often in what follows.

Lemma 11.5. There is a constant C > 0 such that for any k ∈ [4, 8],
and any Borel measurable function f : C → R.

∣∣∣
∫

π−1(kI0)

fd(µ̃− hdH1
|Γ)
∣∣∣ .

∫

kI0

{
oscB(Ã(t),C

√
λℓ(t)) f

}
dσ(t)

+

∫

(k+C
√
λ)I0\kI0

|f ◦ Ã| dm1

+

∫

kI0

(f ◦ Ã)b dm1,

(11.9)

where b : R → R satisfies supp(b) ⊂ (k + 1)I0 and ‖b‖∞ .
√
λ.

Proof. Write
∫

π−1(kI0)

f
[
dµ̃− hdH1

|Γ)
]

=

∫

π−1(kI0)

(f − f ◦ P ) dµ̃+

∫

kI0

f ◦ Ã (dσ − g · dm1).

Recall from (11.2) that Γ = {Ã(t) : t ∈ R} and

(11.10) F ⊂ {x ∈ C : dist(x, Ã(π(x))) . λℓ(x)}.
Therefore

∣∣∣
∫

π−1(kI0)

(f − f ◦ P ) dµ̃
∣∣∣.
∫

kI0

{
oscB(Ã(t),C

√
λℓ(t)) f

}
dσ(t).

For the remaining term, we first observe that the function

gχkI0 − [η√λℓ( · ) ∗ (χkI0σ)]

is supported in (k + C
√
λ)I0\(k − C

√
λ)I0, and therefore

∣∣∣
∫

R

(f ◦ Ã) {gχkI0 − [η√λℓ( · ) ∗ (χkI0σ)]}dm1

∣∣∣

.

∫

(k+C
√
λ)I0\(k−C

√
λ)I0

|f ◦ Ã| g dm1.
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But now, using (11.5), and that ℓ(t) & 1 for t ∈ kI0\(k − C
√
λ)I0,

∫

kI0\(k−C
√
λ)I0

|f ◦ Ã| g dm1 .

∫

kI0

{oscB(Ã(t),C
√
λℓ(t)) f} g(t) dm1(t)

+

∫

(k+C
√
λ)I0\kI0

|f ◦ Ã| dm1

.

∫

kI0

{oscB(Ã(t),C
√
λℓ(t)) f} dσ(t)

+

∫

(k+C
√
λ)I0\kI0

|f ◦ Ã| dm1.

It remains to consider
∫

kI0

f ◦ Ã
(
dσ − η√λℓ( · ) ∗ (χkI0σ) dm1

)
.

First, using Fubini’s theorem, observe that
∫

R

[f ◦ Ã(t)η√λℓ(t) ∗ (χkI0σ)]} dm1(t)

=

∫

kI0

∫

R

η√λℓ(s)(t− s)(f ◦ Ã)(s) dm1(s)dσ(t)

In order to obtain a convolution structure, we wish to replace ℓ(s) in
the right hand integral with ℓ(t). To this end, recall Lemma 11.3:

(11.11) |η√λℓ(s)(t− s)− η√λℓ(t)(t− s)| .
√
λ

ℓ(t)
χB(t,C

√
λℓ(t)).

Crudely employing this bound, the difference
∫

kI0

∫

R

η√λℓ(s)(t− s)(f ◦ Ã)(s) dm1(s)dσ(t)

−
∫

kI0

∫

R

η√λℓ(t)(t− s)(f ◦ Ã)(s) dm1(s)dσ(t)

can be bounded in absolute value by

∫

(k+C
√
λ)I0

f ◦ Ã(t)
{√

λ

ℓ(t)
σ(kI0 ∩ B(t, C

√
λℓ(t)))

}
dm1(t).

Labelling the function in the brackets { · · · } appearing in this integral

as b, we find from (7.5) that ‖b‖∞ .
√
λ.
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Finally, notice that
∣∣∣
∫

kI0

f ◦ Ã dσ −
∫

kI0

∫

R

η√λℓ(t)(t− s)(f ◦ Ã)(s) dm1(s)dσ(y)
∣∣∣

≤
∫

kI0

∫

R

η√λℓ(t)(t− s)|(f ◦ Ã(t)− (f ◦ Ã)(s)| dm1(s)dσ(t)

≤
∫

kI0

{
oscB(Ã(t),C

√
λℓ(t)) f

}
dσ(t).

The proof is complete. �

The following lemmas correspond with Lemma 10.7 and Lemma 10.8
in Tolsa’s paper ([To3]).

Lemma 11.6. It holds that

‖T⊥
ℓ(·),1(µ|F )− T⊥

ℓ(·),1(hH1
|Γ)‖L2(Γ∩π−1(4I0)) .

√
λ.

Proof. For t ∈ 4I0, the function

y 7→ K⊥
ℓ(t),1(Ã(t)− y), y ∈ C

is supported on 6B0 ⊂ π−1(6I0). We apply the comparison lemma
Lemma 11.5 with this function taking the place of f , and k = 6. Now,
for s ∈ 6I0,

oscB(Ã(s),C
√
λℓ(s))(f) .

√
λ

ℓ(s)

ℓ(t)2 + |Ã(s)− Ã(t)|2

.
√
λ

ℓ(s)

ℓ(t)2 + |s− t|2

.
√
λ

ℓ(s)

ℓ(s)2 + |s− t|2 ,

where in the last inequality we have used that ℓ is a Lipschitz function,
and so ℓ(s) . ℓ(t) + |s− t|. We are thus led to estimate

∫

4I0

(∫

6I0

ℓ(s)

ℓ(s)2 + |s− t|2dσ(s)
)2
dm1(t).

To bound this integral we follow a standard path. Observe that, for
any s ∈ R,

∫

4I0

ℓ(s)

ℓ(s)2 + |t− s|2h(t) dm1(t) . N (h)(s),

where N (f)(s) := supr>ℓ(s)
1
2r

∫
B(s,r)

f dm1. Since σ(D(s, r)) . r for

any r ≥ ℓ(s) (see property 7.5 in Lemma 7.18), one verifies via the usual
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weak-type bound and interpolation13 that N : L2(m1) → L2(σ|6I0) has
operator norm . 1. Duality therefore gives that

∫

4I0

(∫

6I0

ℓ(s)

ℓ(s)2 + |s− t|2dσ(s)
)2
dm1(t) . 1.

Regarding the remaining terms in the comparison lemma, the second
term equals zero due to the compact support of f , so we need to bound

∫

4I0

∣∣∣
∫

6I0

K⊥
ℓ(t),1(Ã(t)− Ã(s))b(s) dm1(s)

∣∣∣
2

dm1(t).

where ‖b‖2 .
√
λ. However, the operator boundedness of the Huovinen

transform on Lipschitz graphs ensures that this double integral is .
λ. �

Observe that, as a particular consequence of Lemma 11.6 and part
(1) of Theorem 10.1, we have that

(11.12) ‖T⊥
ℓ(·),1(µ|F )‖L2(Γ∩π−1(4I0)) . 1.

In fact we can say this bound is of order α by further appealing to
Lemma 11.2, but this gain will not be of use.

Lemma 11.7.

‖T⊥
ℓ(·),1(µ|F )‖2L2(hdH1

|Γ∩π−1(4I0)
) − ‖T⊥

ℓ(·),1(µ|F )‖2L2(µ|F∩π−14I0
) . (M + 1)

√
λ.

Proof. We apply the comparison estimate (Lemma 11.5) with k = 4
and f = |T⊥

ℓ(·),1(µ|F )|2. Now,

oscB(Ã(x),C
√
λℓ(x)) |T⊥

ℓ( · ),1(µ|F )| .
√
λ.

Therefore,

oscB(Ã(x),C
√
λℓ(x)) |T⊥

ℓ( · ),1(µ|F )|2 .
√
λ inf

B(Ã(x),C
√
λℓ(x))

|T⊥
ℓ( · ),1(µ|F )|+ λ.

13To be completely transparent we sketch the proof: For λ > 0, choose intervals
Bj = B(sj , rj) with rj ≥ ℓ(sj) such that Bj are disjoint, 1

2rj

∫
Bj

f dm1 > κ, and

Eκ := {N (f) > κ} ⊂ ⋃
j 3Bj . We arrive at the weak type bound σ(Eκ) ≤∑

j σ(3Bj) .
∑

j m(Bj) . 1
κ

∫
f dm1, where in the second inequality it is used

that rj ≥ ℓ(sj). Now, insofar as ‖Nf‖∞ ≤ ‖f‖∞, the subadditivity of N yields
that Eκ ⊂ {N (fχ{|f |>κ/2}) > κ/2}. Therefore, applying the weak type bound to
fχ{|f |>κ/2} yields that

σ(Eκ) .
1

κ

∫

{f>κ/2}

f dm1.

The desired inequality follows from integrating both sides over κ with respect to
the measure κχ(0,∞) dm1(κ).
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But now, using (11.2) once again, we have
∫

4I0

inf
B(Ã( · ),C

√
λℓ( · ))

|T⊥
ℓ( · ),1(µ|F )|dσ .

∫

5B0

|T⊥
ℓ( · ),1(µ|F )|dµ|F

and the term on the right hand side is .M due to the operator bound-
edness of the Huovinen transform on L2(µ) (assumption (d) in Main
Lemma 6.1).
For the second term appearing in the comparison estimate, observe

that since ℓ(t) & 1 for t /∈ 4I0,

(11.13) |(f ◦ Ã)(t)| . 1 for t /∈ 4I0

and therefore ∫

(k+C
√
λ)I0\kI0

|f ◦ Ã| dm1 .
√
λ.

Finally, for the third term appearing in Lemma 11.5, recall that ‖b‖∞ .√
λ, and therefore

∫

5I0

|T⊥
ℓ(t),1(µ|F )(Ã(t))|2b(t) dm1(t) .

√
λ‖f‖2L2(Γ∩π−1(5I0))

.

We split ‖f‖2L2(Γ∩π−1(5I0))
= ‖f‖2L2(Γ∩π−1(4I0))

+‖f‖2L2(Γ∩π−1(5I0\4I0)). The

first term is controlled by (11.12), while the second is controlled by
(11.13). �

The final step required to prove Proposition 11.1 is the following
lemma

Lemma 11.8. We have
∣∣∣‖T⊥

ℓ(·),1(hH1
|Γ)‖2L2(hdH1

|Γ∩π−1(4I0)
) − ‖T⊥

ℓ(·),1(H1
|Γ)‖2L2(Γ∩π−1(4I0))

∣∣∣. α2.

Proof. First observe that, as a consequence of (11.6) in Lemma 11.4,

(11.14) ‖(h− 1)‖L2(Γ∩π−1(6I0)) . α2,

so

‖T⊥
ℓ(·),1(hH1

|Γ)− T⊥
ℓ(·),1(H1

|Γ)‖L2(hdH1
|Γ∩π−1(4I0)

)

. ‖T⊥
ℓ(·),1((h− 1)H1

|Γ)‖L2(Γ∩π−1(4I0))

. ‖T⊥
ℓ(·),1((h− 1)H1

|Γ∩π−1(6I0)
)‖L2(Γ∩π−1(4I0))

. ‖h− 1‖L2(Γ∩π−1(6I0)) . α2.
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Secondly,
∣∣∣‖T⊥

ℓ(·),1(H1
|Γ)‖2L2(hdH1

|Γ∩π−1(4I0)
) − ‖T⊥

ℓ(·),1(H1
|Γ)‖2L2(Γ∩π−1(4I0))

∣∣∣

=
∣∣∣
∫

|T⊥
ℓ(·),1(H1

|Γ)|2(h− 1)dH1
Γ∩π−1(4I0))

∣∣∣

≤ ‖T⊥
ℓ(·),1(H1

|Γ)‖2L4(Γ∩π−1(4I0))
‖(h− 1)‖L2(Γ∩π−1(4I0))

Appealing to Lemma 11.2 and part (1) from Theorem 10.1 (with p = 4),
we get

‖T⊥
ℓ(·),1(H1

|Γ)‖2L4(Γ∩π−1(4I0))
. α2.

On the other hand, from (11.14), ‖(h−1)‖L2(Γ∩π−1(4I0)) . α2. There-
fore,
∣∣∣‖T⊥

ℓ( · ),1(H1
|Γ)‖2L2(hdH1

|Γ∩π−1(4I0)
) − ‖T⊥

ℓ( · ),1(H1
|Γ)‖2L2(Γ∩π−1(4I0))

∣∣∣ . α4,

and the lemma follows. �

Proof of Proposition 11.1. Notice that employing (11.3), followed by
applying Lemma 11.2, then Lemma 11.8, Lemma 11.6 (observing that
h . 1 on Γ as a consequence of (11.5)), and then finally Lemma 11.7,
leads to the following estimate

‖T⊥
ℓ(·),1(µ|F )‖L2(µ|F∩π−1(4I0)

) & ‖A′‖L2(R) − Cα2.

Since µ(10B0\F ) is small, the proposition follows from L2(µ) bound-
edness of the Huovinen transform (see (a) and (d) from Main Lemma
6.1). �

12. The final contradiction: The proof of Proposition 9.1

Proof of Proposition 9.1. Assume that µ(F2) > α1/2. Then by Lemma
9.2,

‖A′‖2L2(R) & α5/2.

Therefore, Proposition 11.1 yields that

‖T⊥
ℓ(·),1(µ)‖2L2(µ|F∩π−1(4I0)

) & α5/2.

This contradicts assumption (e) of the Main Lemma. �

Appendix A. Continuity of the transportation

coefficients

In this appendix we prove Lemma 3.3.

We start with a simple remark.
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Remark A.1. Given two pairs (x, r), (x1, r1) ∈ C×R+, we define the
map

O(y) =
y − x1
r1

r + x.

The map O satisfies O(B(x1, 4r1)) = B(x, 4r) and ‖O‖Lip = r
r1

=

(‖O−1‖Lip)−1. Moreover, O establishes a bijection between Fx,r and
Fx1,r1. Given f ∈ Fx,r we will denote by fO(·) = (f ◦O)(·) ∈ Fx1,r1.
Below, given a sequence {(xj, rj)}j≥1 relative to (x, r), we will denote

by Oj := O the function corresponding to the pairs (x, r) and (xj , rj).
Furthermore, we will write fj in place of fO.

Lemma A.2. (Continuity of transportation coefficients) Given a se-
quence {(xj , rj)}j≥0 ∈ C×R+ satisfying that xj → x0 ∈ C and rj → r0,
we have the following:

(1) αµ(B(xj , rj) → αµ(B(x0, r0)).
(2) Given a sequence Dj ∈ Gxj

for all j ≥ 0 satisfying ∠(Dj, D0) →
0, then αµ,H1

|Dj
(B(xj , rj)) → αµ,H1

|D
(B(x0, r0)).

Proof. With this in mind, both parts (1) and (2) of the lemma are
consequences of the following statement: If xj → x0 and rj → r0, then
for every η > 0, we can find δ > 0 and j0 ≥ 1 such that for every
j ≥ j0 we have that:

sup
(D,D′)∈Gx0×Gxj ,

∠(D,D′)≤δ

|αµ,D(B(x0, r0))−αµ,D′(B(xj , rj))|≤ηδµ(B(x0, 5r0)).
(A.1)

We focus on proving (A.1). Fix η > 0. We will use the following two
facts, which are routinely verified:

(1) There exists j0 ≥ 1 such that for every j ≥ j0 we have that

∣∣∣
∫
ϕxj ,rjfj dµ−

∫
ϕx0,r0f dµ

∣∣∣≤ ηµ(B(x0, 5r0)),

for every f ∈ Fx0,r0. (For this one needs to observe that the
collection Fx0,r0 is relatively compact in the uniform topology.)

(2) There exists δ > 0 and j0 ≥ 1 such that for every j ≥ j0 and
for any two lines D ∈ Gx and D′ ∈ Gxj

satisfying ∠(D,D′) ≤ δ,
∣∣∣∣
1

r0

∫
ϕx0,r0f dH1

|D − 1

rj

∫
ϕxj ,rjfj dH1

|D′

∣∣∣∣ ≤ η,

for every f ∈ Fx0,r0.
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Given D ∈ Gx0 and D′ ∈ Gxj
, we put

c =
1∫

ϕx0,r0 dH1
|D

∫
ϕx0,r0 dµ, and cj =

1∫
ϕxj ,rj dH1

|D′

∫
ϕxj ,rj dµ.

Since the denominators in the fractions appearing in c and cj coin-
cide, we can choose j0 larger if necessary to ensure that |cj − c| .
ηδµ(B(x0, 5r0)) for all j ≥ j0. Together with fact (2), this remark en-
sures that given any two lines D ∈ Gx and D′ ∈ Gxj

with ∠(D,D′) ≤ δ
and j ≥ j0 we have that∣∣∣∣

c

r0

∫
ϕx0,r0f dH1

|D − cj
rj

∫
ϕxj ,rjfj dH1

|D′

∣∣∣∣ . ηδµ(B(x0, 5r0)),

for every f ∈ Fx0,r0. Combining the previous inequality with fact (1)
above yields that if ∠(D,D′) ≤ δ and j ≥ j0, then for any f ∈ Fx0,r0,

∣∣∣ 1
r0

∫
ϕx0,r0f d(µ− cH1

|D)−
1

rj

∫
ϕxj ,rjfj d(µ− cjH1

|D′)
∣∣∣

. ηδµ(B(x0, 5r0)).

The claimed estimate (A.1) now follows from (several applications of)
the triangle inequality. �

Appendix B. The proof of Proposition 7.17

This appendix gives a detailed proof of Proposition 7.17. We follow
[L] quite closely.

B.1. Constructing the map A on π(Z).

Lemma B.1. Let (x, t1), (y, t2) ∈ S be such that

|x− y| ≥
√
λmax(t1, t2).

Then

(B.1) |π⊥(x)− π⊥(y)| ≤
(
α + C

√
λ
)
|π(x)− π(y)|.

Proof. Put r = min(λ−1/2|x − y|, 10). Then (x, r) ∈ S and π(y) ∈
π(B(x, 2|x− y|)), so we infer from Lemma 7.7 that

dist(y,D) .
√
λ|x− y|

for some line D ∈ Gx with ∠(D,D0) ≤ α. In particular, if YD denotes
the projection of Y onto D, then

(B.2)
(
1 + C

√
λ
)
|x− y| ≥ |x− yD| ≥

(
1− C

√
λ
)
|x− y|.

But, since ∠(D,D0) ≤ α,

|π⊥(x)− π⊥(yD)| ≤ α|π(x)− π(yD)|.
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Projections contract distances, so we conclude from (B.2) that

|π⊥(x)− π⊥(y)| ≤ α|π(x)− π(y)|+ C
√
λ|x− y|.

Finally, since |x − y| ≤ |π⊥(x) − π⊥(y)| + |π(x) − π(y)|, we arrive at
the desired statement after noting that λ≪ 1. �

Corollary B.2. Suppose x, y ∈ C and t ≥ 0 are such that

|π(x)− π(y)| ≤ t, d(x) ≤ t, and d(y) ≤ t.

Then |x− y| . t.

Proof. We may assume |x − y| > 3t since otherwise there is nothing
to prove. By definition we can find (X, s1) and (Y, s2) belonging to S,
with |x−X|+ s1 ≤ t and |y − Y |+ s2 ≤ t. But then (X, t) and (Y, t)
both belong to S and |X − Y | > t. Therefore, Lemma B.1 yields that

(B.3) |π⊥(X)− π⊥(Y )| . |π(X)− π(Y )|.
But by the triangle inequality, |π(X)−π(Y ))| ≤ 3t, and therefore from
(B.3) we infer that |π⊥(X) − π⊥(Y )| . t. Appealing to the triangle
inequality again we conclude that

|π⊥(x)− π⊥(y)| . t.

Given that we are assuming that |π(x)−π(y)| ≤ t, the corollary follows.
�

Corollary B.3. Let x, y ∈ Z. Then

|π⊥(x)− π⊥(y)| ≤ 2α|π(x)− π(y)|.
Proof. Assume x 6= y. Given t ∈ (0, |x−y|), we can find pairs (X, t) and
(Y, t) ∈ S where X and Y are arbitrarily close to x and y respectively,

and d(X, Y ) > t. Since
√
λ≪ α, Lemma B.1 now yields that

|π⊥(X)− π⊥(Y )| ≤ 2α|π(X)− π(Y )|,
and the statement follows since projections are continuous. �

Define the function A on π(Z) by setting

A(π(x)) = π⊥(x) for x ∈ Z.
Keeping in mind Corollary B.3, we see that A is well defined on

π(Z), and moreover, A : π(Z) → D⊥
0 is 2α-Lipschitz:

(B.4) |A(π(x))− A(π(y))| ≤ 2α|π(x)− π(y)|.
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B.2. Extending A over D0. We now select a Whitney cover relative
to the function D. Set I to be a collection of dyadic intervals in R.
For p ∈ 10I0\π(Z) we have D(p) > 0. Set Ip to be the largest dyadic

interval in I containing p satisfying

diam Ip ≤
1

20
inf
u∈Ip

D(u).

The interval Ip exists because D(p) > 0 and D is Lipschitz.
Consider the collection of these intervals and relabel them Imax =

{Ij}j. The intervals Ij are disjoint and the collection of 2Ij is a cover
of 10I0 \ π(Z).
The following lemma collects standard properties regarding this col-

lection of intervals and follows immediately from the definitions ( and
using that D is 1-Lipschitz), see [L] page 847 or [To5], page 248.

Lemma B.4. The following assertions hold.

(1) If p ∈ 10Ij then 10 diam Ij ≤ D(p) ≤ 60 diam Ij.
(2) Whenever 10Ii ∩ 10Ij 6= ∅, then

diam Ij . diam Ii . diam Ij.

(3) There exists N > 0 (an absolute constant) such that for every
i, at most N intervals Ij satisfy 10Ii ∩ 10Ij 6= ∅.

Lemma B.5. For any Ii ∈ Imax, there exist a ball Bi ∈ S such that

(1) diam Ii ≤ r(Bi) . diam Ii,
(2) d(π(c(Bi)), Ii) ≤ 120 diam Ii, and
(3) d(π(Bi), Ii) . diam Ii.

Proof. Let p ∈ Ii. We can find (x, t) ∈ S such that d(p, π(x)) +
t ≤ 2D(p) ≤ 120 diam Ii (see part (1) of Lemma B.4). The ball
B(x,max{t, diam(Ii)}) satisfies properties (1) and (2), from which (3)
immediately follows. �

Definition (The function Ai). For each of the balls Bi ∈ S, we set
Di ∈ Gc(Bi) to be such that αµ,Di

(Bi) ≤ ε with ∠(Di, D0) ≤ α.
Put Ai to be the affine function Ai : D0 → D⊥

0 whose graph is
Di = DBi

. Then certainly Ai is Lipschitz of constant ≤ 2α.

Lemma B.6. Whenever 10Ii ∩ 10Ij 6= ∅,
(1) d(Bi, Bj) . diam Ij,
(2) for any L > 1, |Ai(q)− Aj(q)| . L2λ diam Ij for any q ∈ LIj,

and
(3) dist(Di, Dj ∩ Bj) . λ diam(Ii) and |(Ai − Aj)

′| . λ.
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Proof. For (1) we apply Corollary B.2: If 10Ii∩ 10Ij 6= ∅, then ℓ(Ri) ≈
ℓ(Rj), so ℓ(Bi) ≈ ℓ(Bj) (see part (1) of Lemma B.5). But then
d(π(Bi), π(Bj)) . ℓ(Ii) (see part (3) of Lemma B.5). Therefore ap-
plying Corollary B.2 with x, y to be the centers of Bi and Bj, and t a
suitable constant multiple of diam(Ij) yields the required inequality.
Given (1), the balls Bi, Bj both lie in S, satisfy r(Bi) ≈ r(Bj) and

CBi ∩CBj 6= ∅, for some absolute constant C > 0. We may therefore
infer from Lemma 7.8 that

(B.5) dist(y,Di) . λ · r(Bi) for all y ∈ Dj ∩ Bj,

from which property (3) is an immediate consequence (recalling that
r(Bi) ≈ r(Bj)).
Finally, since Di and Dj both form an angle ≤ α with D0, statement

(2) also follows from (B.5) and parts (1) and (3) of Lemma B.5. �

Lemma B.7. There exists C > 1 such that if x ∈ F\Z then π(x) ∈ 3Ii
and x ∈ CBi for some Ii ∈ Imax.

Proof. Let x ∈ F \ Z. We have that either

(1) π(x) ∈ π(Z) and there exists y ∈ Z such that π(y) = π(x),
(2) or π(x) ∈ 3Ii for some i and by part (3) of Lemma B.5, there

exists C > 1 such that π(x) ∈ π(CBi).

We first will rule out that possibility (1) can occur. To this end, we
notice that B(y, 2|x − y|) belongs to S, and x ∈ π(B), so by Lemma
7.7, dist(x,D) . λ|x−y| where D ∈ Gy satisfies ∠(D,D0) ≤ α. On the
other hand, π(x) = π(y) and so |x − y| . dist(x,D), which is absurd
given that λ≪ 1.
We may therefore assume that (2) holds. Then CBi ∈ S and π(x) ∈

π(CBi). Therefore, Lemma 7.7 ensures that x ∈ 3CBi, and the proof
is complete. �

The previous lemma has the following useful consequence.

Corollary B.8. For any x ∈ F ,

d(x) . D(π(x)) ≤ d(x).

Proof. If d(x) = 0, the conclusion is obvious. Otherwise, π(x) ∈ 3Ii for
some i. It follows from the definition of the intervals Ii, and Lemmas
B.4 and B.5 that D(π(x)) & r(Bi). On the other hand, by Lemma
B.7) x ∈ CBi, and so d(x) . r(Bi). �

Definition. Choose a partition of unity ψi subordinate to the cover
(2Ii)i satisfying

‖ψ′
i‖∞ .

1

diam Ii
, and ‖ψ′′

i ‖∞ .
1

(diam Ii)2
.
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For p ∈ D0\π(Z), we define A as

A =
∑

Ii∈Imax

ψi · Ai,

Lemma B.9. For every p ∈ 3I0,

|A(p)| . λ.

Proof. From Corollary 7.11, we have

F ∩ π−1(10I0) ⊂
{
dist(·, D0) . λ

}
.

Since Z ⊂ F , we may assume that (p, A(p)) /∈ Z. We want to prove
that A(p) =

∑
k ψk(p)Ak(p) satisfies |A(p)| . λ. Since

∑
k ψk(p) ≤ 1,

it suffices to prove that

|Ak(p)| . λ whenever ψk(p) 6= 0.

Fix such a k. Consider the ball Bk for which Dk is the graph of Ak, then
(p, Ak(p)) ∈ CBk for some C > 0 (Lemma B.5). But now we may apply
Corollary 7.10 to find that |Ak(p)| = dist((p, Ak(p)), D0) . λ. �

Lemma B.10. A : 3I0 → D⊥
0 is a Cα-Lipschitz function.

Proof. Fix p, q ∈ 3I0.
If p, q ∈ π(Z) this has already been proved (recall (B.4), so we will

assume that p /∈ π(Z), and so p ∈ 2Ii for some i.
First suppose that q /∈ π(Z), so q ∈ 2Ik for some k, and

∑
k ψk(p) =∑

k ψk(q) = 1.
Case 1: q ∈ 1000Ii. Then write

|A(p)−A(q)| ≤
∑

j

ψj(p)|Aj(p)− Aj(q)]|

+
∑

j

|ψj(p)− ψj(q)||Aj(q)− Ak(q)|

The first term is bounded by 2α|p− q|. For the second term, we infer
from part (2) of Lemma B.6 (and Lemmas B.4, B.5) that for any j
where ψj(p) or ψj(q) is non-zero,

|Aj(q)− Ak(q)| . λℓ(Rj).

On the other hand, |ψj(p) − ψj(q)| . 1
ℓ(Ij)

, so, insofar as the number

of j with either ψj(p) or ψj(q) is non-zero is bounded by an absolute
constant,

|A(p)−A(q)| ≤ 2α|p− q|+ Cλ|p− q| ≤ 3α|p− q|.(B.6)
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Case 2: q /∈ 1000Ii. Then |p − q| & max{diam(Ii), diam(Ik)}.
Consider the pair x = c(Bk) and t = r(Bk). Then |x − c(Bi)| &

max(r(Bi), t) ≫
√
λmax(r(Bi), t), and so Lemma B.1 yields that

|Ak(π(c(Bk)))− Ai(π(c(Bi)))| = |π⊥(x)− π⊥(c(Bi))|
. α|π(c(Bk))− π(c(Bi))|.

(B.7)

However, Part (2) of Lemma B.6 ensures that for every ℓ with π(c(Bi)) ∈
2Iℓ,

|Aℓ(π(c(Bi)))−Ai(π(c(Bi)))| . λr(Bi).

By the same logic this inequality also holds with i replaced by k. There-
fore,

|Ak(π(c(Bk)))− Ai(π(c(Bi)))| . α|π(c(Bk))− π(c(Bi))|
But, c(Bi) ∈ 1000Ii (property (2) of Lemma B.5), so we may use the
calculation (B.6) to infer that

|A(p)− A(π(c(Bi)))| = |A(p)− π⊥(c(Bi))| . α diam(Ii),

and, similarly,

|A(q)−A(π(c(Bk)))| . |A(q)− π⊥(c(Bk))| . α diam(Ik).

So by the triangle inequality we get

|A(p)−A(q)| . α
[
|π(c(Bℓ))−π(c(Bk))|+diam(Iℓ)+diam(Ik)

]
. α|p−q|.

If instead it holds that q ∈ π(Z) then recall that A(q) = π⊥(x) for
q = π(x), and in the previous calculation we may replace the role of
(c(Bk), r(Bk)) with the pair (x, t) where q = π(x) and t < diam(Ii).
Then Lemma B.1 yields that |Ai(π(c(Bi))) − A(q)| . α|c(Bi) − q|
and the desired estimate follows from repeating estimates from Case 2
above. �

Lemma B.11. If p ∈ 2Ii then

|A′′(p)| . λ

diam Ii
.

λ

D(p)
.

Proof. We mimic the calculation in Lemma 3.13 of [L]. Observe that

A′′(p) =
∑

j

A′
j(p)ψ

′
j(p) +

∑

j

Aj(p)ψ
′′
j (p).

Since
∑

j ψ
′
j =

∑
j ψ

′′
j = 0, we have

|A′′(p)| ≤
∑

j

|A′
j(p)− A′

i(p)||ψ′
j(p)|+

∑

j

|Aj(p)− Ai(p)||ψ′′
j (p)|
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For each j with 2Ij ∩ 2Ii 6= ∅, part (3) of Lemma B.6 ensures

|(Aj − Ai)
′| . λ, and |(Aj(p)−Ai(p))| . λ diam(Ij).

The result follows using the fact that the intervals 2Ij have bounded
overlap, and the properties of the partition of unity ψj . �

B.3. Localization of A. We set ψ ≡ 1 on 3
2
I0 with supp(ψ) ⊂ 2I0.

We define the function A : D0 → D⊥
0 ,

A =

{
ψ ·A on 3I0,

0 on D0 \ 3I0.

Lemma B.12. The function A is Cα-Lipschitz, and

|A′′(p)| . λ

D(p)
.

This result verifies property (1) of Proposition 7.17.

Proof. The function A is Cα-Lipschitz on 3I0, and supp∈3I0 |A(p)| . λ
(see Lemma B.9). Since ‖ψ‖Lip . 1 and supp(ψ) ⊂ 2I0, we infer that
A is Cα-Lipschitz (λ≪ α). Regarding the second derivative property,
if ψ′(p) 6= 0 or ψ′′(p) 6= 0, then dist(p, I0) & 1, so diam(Ii) & 1 for
any Ii with p ∈ 2Ii. But then if Bi ∈ S is the ball associated to Ii,
r(Bi) & 1 and so Corollary 7.10 ensures that both

|A′
i(p)| . λ and |Ai(p)| . λ.

There are at most a constant number of intervals Ii such that p ∈ 2Ii
so we get that

|A(p)| . λ and |A′(p)| . λ.

(The first property of course also follows from Lemma B.9.) Since
‖ψ′‖∞ + ‖ψ′′‖∞ . 1, we obtain the desired bound from Lemma B.11.

�

B.4. Concentration around the graph of A. In this section we

prove that every point in F will be very close to the graph Γ of Ã,

defined as Ã(p) = (p,A(p)) for p ∈ R. Let us first record an immediate
consequence of Lemma B.9.

Corollary B.13. One has

Γ ⊂
{
dist(·, D0) . λ

}
.
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Indeed, Lemma B.9 ensures that Γ ∩ π−1(3I0) ⊂ {dist(·, D0) . λ},
but outside of 3I0 we have that A(p) = 0. This result verifies property
(2) of Proposition 7.17.

We now move onto verifying property (3) of Proposition 7.17. In
view of Lemma B.8, this property is an immediate consequence of the
following lemma.

Lemma B.14. For every x ∈ F the following is satisfied:

|x− Ã(π(x))| . λd(x).

Proof. Certainly Z ⊂ Γ, and so we may assume that x ∈ F\Z. Lemma
B.7 then ensures that π(x) 6∈ π(Z). First suppose p ∈ 3

2
I0, so that

|x− Ã(π(x))| = |π⊥(x)− A(π(x))|
=
∣∣∣π⊥(x)−

∑

i

ψi(π(x))Ai(π(x))
∣∣∣

≤
∑

i

ψi(π(x))
∣∣∣π⊥(x)− Ai(π(x))

∣∣∣.

If ψi(π(x)) 6= 0 then π(x) ∈ 3Ii and Lemma B.7 ensures that x ∈
CBi, while from the definition of Ii and Lemma B.8 we find that ℓ(Ii) ≈
r(Bi) ≈ d(x).
Since CBi ∈ S we can find a line D in Gc(Bi) such that ∠(D,D0) ≤ α

and αµ,D(CBi) ≤ ε. Lemma 7.8 (applied with L an absolute constant)
yields that

∠(D,Di) . λ.

On the other hand, since x ∈ F , Lemma 7.7 ensures that dist(x,D) .
λr(Bi). Thus, combining these observations yields

dist(x,Di) . λr(Bi) . λd(x).

Since ∠(Di, D0) ≤ α, this in turn implies that
∣∣∣π⊥(x)−Ai(π(x))

∣∣∣. λd(x).

On the other hand, if p /∈ 3
2
I0, we have that d(x) & 1, so the desired

estimate is an immediate consequence of Corollaries 7.11 and B.13.
The proposition is proved. �

It remains to verify the final property in Proposition 7.17, which we
restate here:
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Lemma B.15. If B(x, r) ∈ S and D ∈ Gx satisfies ∠(D,D0) ≤ α and
αµ,D(B(x, r)) ≤ ε, then for every p ∈ π(B(x, r)),

dist(Ã(p), D) . λ · r.

Proof. We first consider the case when p ∈ π(Z). Then A(p) ∈ F and
so Lemma 7.7 ensures that dist(A(p), D) . λ · r. If p /∈ π(Z), then
p ∈ 2Ii for some i. First suppose that p ∈ 3

2
I0. Notice that r ≥ d(x) &

D(π(x)) (where Corollary B.8 has been used in the second inequality).
Since the function D(p) is 1-Lipschitz, it follows that D(p) . r and
so by construction ℓ(Ii) . r. Therefore, from Lemma B.5, π(Bi) ⊂
π(B(x, Cr)) and therefore from Lemma 7.7 Bi ∩ B(x, 3Cr) 6= ∅. But
now from Lemma 7.8, dist(y,D) . λ·r for every y ∈ Di∩Bi. Insofar as

p ∈ 3
2
I0, Ã(p) is a convex combination of points on the lines Di where

p ∈ 2Ii, the result follows.
Finally, if p /∈ 3

2
I0, then r & 1 (x ∈ B0). In this case the result

follows from Corollary B.13 and Corollary 7.10. �
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