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A Motzkin path is any path starting on the x-axis that can
make up moves, down moves, and level moves, such that it
ends on the x-axis and never goes below the x-axis. We may
take a Motzkin path and mark any number of levels steps
that lie on the x-axis.

1. Introduction and Background

A Motzkin path of length n is a lattice path starting at (0, 0) and ending at (n, 0) that
uses up steps U = (1, 1), down steps D = (1,−1), and level steps L = (1, 0), such
that the path never goes below the x-axis. The set of Motzkin paths is equivalent to
the set of words of length n with letters U,D, and L such that at every index, the
number of preceding U ’s is greater than or equal to the number of preceding D’s.
Motzkin paths are counted by the Motzkin numbers, which are deeply connected to
the Catalan numbers and thus have been the subject of numerous studies over the
last forty years. See [? ] and [? ] for a couple of the earliest surveys.

In this paper, we wish to draw attention in particular to Motzkin paths that have
no peaks, i.e., Motzkin paths that do not contain the subsequence UD. Peakless
Motzkin paths are counted by the generalized Catalan numbers, also called the RNA
numbers, 1, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, . . . whose generating function is given by

(1− x+ x2)−
√

1− 2x− x2 − 2x3 + x4

2x2 . (1)
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Peakless Motzkin paths are in bijection with graph theoretic representations of the
planar folding of RNA molecules, otherwise known as RNA secondary structures.
RNA secondary structures and RNA numbers have been the subject of several studies
in more recent years, including [? ] and [? ].

For the present study, we will consider peakless Motzkin paths where level steps at
a certain fixed height are allowed to be distinguished or “marked.” For instance, the
number of peakless Motzkin paths of length n having k marked level steps on the
x-axis is given by the (n, k)th entry of the following infinite lower triangular array:



1
1 1
1 2 1
2 3 3 1
4 6 6 4 1
8 13 13 10 5 1
... ... ... ... ... ... . . .


This array is known to be a pseudo-involution in the Riordan group. The main
objective of this paper is to give a combinatorial interpretation of this fact using
Motzkin paths.

The organization of the paper will proceed as follows. The remainder of Section 1
provides the background and definitions needed to explain why the array R above is
a pseudo-involution in the Riordan group and to set the stage for the combinatorial
interpretation in terms of Motzkin paths. In Section 2, we provide a generating
function for the number of Motzkin paths with a prescribed number of level steps
occurring on the x-axis and a prescribed number of peaks. In Section 3, we present
a combinatorial proof that the array R is a pseudo-involution in the Riordan group
by way of an involution on the set of pairs of peakless marked Motzkin paths. In
Section 4, we prove an extension of the result from Section 3 to obtain a new class of
combinatorial arrays and corresponding combinatorial identities.

1.1 Background on the Riordan group

In order to provide the background motivating this paper, we will briefly describe the
Riordan group. For more formative background on the Riordan group, see [? ].

An element R of the Riordan group is an infinite lower triangular array whose k-th
column has generating function g(x)fk(x), where k = 0, 1, 2, . . . and g(x), f(x) are
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generating functions with g(0) = 1, f(0) = 0. We say R is a Riordan array and write
R = (g(x), f(x)). Multiplication in the Riordan group is matrix multiplication. Since
a Riordan group element is determined by a pair of generating functions, the product
of Riordan matrices can be described in terms of generating functions as follows

(g(x), f(x)) ∗ (h(x), l(x)) = (g(x)h(f(x)), l(f(x))).

The identity element of the Riordan group is (1, x) and the inverse of R is given by

R−1 = (g(x), f(x))−1 :=
(

1
g(f̄(x))

, f̄(x)
)

(2)

where f̄ is the compositional inverse of f . An element R of the Riordan group is a
called a pseudo-involution if RM has order two, where M = (1,−x).

Proposition 1.1 ([? ]). Let

p(x) = (1− x+ x2)−
√

1− 2x− x2 − 2x3 + x4

2x2 .

Then the Riordan array

(p(x), xp(x)) =



1
1 1
1 2 1
2 3 3 1
4 6 6 4 1
8 13 13 10 5 1
... ... ... ... ... ... . . .


=: 〈pn,k〉n,k≥0 (3)

is a pseudo-involution. That is,

1
1 −1
1 −2 1
2 −3 3 −1
4 −6 6 −4 1
8 −13 13 −10 5 −1
... ... ... ... ... ... . . .



2

=



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
... ... ... ... ... ... . . .


or equivalently, for fixed n and l,

∞∑
k=0

(−1)k+lpn,k pk,l =

1, if n = l

0, otherwise
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Proposition 1.1 was established using Riordan group algebra in [? ].

We use pn,k to denote the (n, k)-th entry of the Riordan array (p(x), xp(x)) from
equation (3). In Section 2, we show that pn,k is the number of peakless Motzkin
paths of length n having k marked level steps on the x-axis. In Section 3 we provide
a combinatorial proof of Proposition 1.1 in terms of peakless marked Motzkin paths.

1.2 Definitions and notation for marked Motzkin paths

As this paper focuses on Motzkin paths with particular features, we wish to make the
those features clear in the following definition.

Definition 1.2. Suppose P is a Motzkin path.

• A flat in P is a level step that occurs on the x-axis. A flat is preceded by an
equal number of up and down steps.

• A peak on P is a sequence of an up step followed immediately by a down step.

• A hill is a peak that begins on the x-axis, or equivalently is preceded by an
equal number of up and down steps.

• We say P is peakless if it contains no peaks.

• If s is a step in P , we define the height of s to be the difference between the
number of up steps and down steps that precede it.

• A tunnel in P is a pair of steps (U∗, D∗) where U∗ is an up step, D∗ is a down
step that appears after U∗, both U∗ and D∗ have the same height and every
step between U∗ and D∗ have a strictly greater height. A step s that occurs
between the two steps of a tunnel is said to be contained by the tunnel.

Throughout this paper we will allow level steps at a specified height to be distin-
guished by referring to them as marked level steps.

Definition 1.3. Amarked Motzkin path is a Motzkin path where some level steps
may be marked. In relation to words, marked level steps will be represented with the
letter M . We say a marked Motzkin path is base marked or that it is a marked
base Motzkin path if marked level steps may only occur at height zero.

We will focus on Motzkin paths that are peakless and based marked.
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Definition 1.4. Let P(h)
n,k denote the set of peak-less Motzkin paths of length n with

exactly k marked level steps, where marked level steps are only allowed to occur at
height h. Then P(0)

n,k denotes the set of peakless base marked Motzkin paths of length
n with k marked flats. Moreover, we define p(h)

n,k := |P(h)
n,k |.

2. Generating functions for marked Motzkin paths

In this section, we derive the ordinary generating function for p(0)
n,k, the number of

peakless base marked Motzkin paths of length n with k marked flats. We show that
this generating function is the same as the generating function for the kth column of
the Riordan array in equation (3).

Theorem 2.1. The coefficient of xamb`cpd in the ordinary generating function

M(x,m, `, p) = 2
1− 2`+ x2 − px2 +m+

√
(m+ px2 − 1− x2)2 − 4x2

,

is the number of Motzkin paths with a up steps, a down steps, b level steps not on the
x-axis, c flats, and d peaks.

Proof. Let M(x,m, `, p) be the generating function of Motzkin paths.

For any non-empty Motzkin path, there is a unique positive integer r such that (r, 0)
is on the path, and no such smaller positive number is on the path.

Additionally every Motzkin path must start with a up step, which has weight x, or a
level step, which has weight ` since we start on the x-axis.

In the second case r = 1, and what follows in another, possibly empty, Motzkin path.
Thus the generating function for these Motzkin paths is `M(x,m, `, p).

In the first case, if the first step is an up step, then the step immediately proceeding
the point (r, 0) must be a down step. Thus the path must pass through the points
(1, 1) and (r − 1, 1). What is between these two points must be another Motzkin
path since the same steps must be used and if it goes below 1 it will hit the bottom
contradicting the fact that r is the first positive integer r such that (r, 0) is a point
on the path.

However in this raised Motzkin path there are no flats, and so the weight of flats
and all other level steps must be the same. If we want to consider flats and all
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other level steps to have the same weight, the generating function for these paths is
M(x,m,m, p).

Additionally if the raised Motzkin path is empty, then the original path has an up
step then a down step and then another Motzkin path, and so has two extra steps
and an extra peak.

Thus we break down the case where a Motzkin path begins with an up step into two
cases, one where it immediately takes a down step and thus form a peak, and the
other where is starts another non-empty Motzkin path.

As demonstrated, the generating function for paths of the first form is

x2pM(x,m, `, p)

while the generating function for paths of the second form is

x (M(x,m,m, p)− 1)xM(x,m, `, p),

which is equal to

x2M(x,m,m, p)M(x,m, `, p)− x2M(x,m, `, p).

Thus every Motzkin path is either: the empty path given by the generating function
1, a level step followed by another Motzkin path given by the generating function
`M(x,m, `, p), a up step followed by a down step followed by another Motzkin path
given by the generating function x2pM(x,m, `, p), or a up step followed by a raised
non-empty Motzkin path followed by a down step and then another Motzkin path
given by the generating function x2M(x,m,m, p)M(x,m, `, p)− x2M(x,m, `, p).

Since every Motzkin path must be of one of these forms and all the cases are mutually
exclusive we have that

M(x,m, `, p) = 1 + `M(x,m, `, p) + x2pM(x,m, `, p)
+ x2M(x,m,m, p)M(x,m, `, p)− x2M(x,m, `, p).

Pictorially, we have that every Motzkin path looks likes exactly one of the following
where M is a Motzkin path:

(0, 0)
M

(0, 0) (n, 0)
M

(0, 0) (n, 0)
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M − 1

M

(0, 0) (n, 0)

Solving for M(x,m, `, p) we get that

M(x,m, `, p) = 1
1− `− x2p+ x2 − x2M(x,m,m, p) .

Since
M(x,m,m, p) = M(x,m, `, p)|`=m ,

we have that

M(x,m,m, p) = 1 +mM(x,m,m, p) + x2pM(x,m,m, p)
+ x2M(x,m,m, p)2 − x2M(x,m,m, p).

Solving for M(x,m,m, p) we get that

M(x,m,m, p) =
(1−m− x2p+ x2) +

√
(m+ x2p− x2 − 1)2 − 4x2

2x2 .

Substituting back into the formula for M(x,m, `, p) and simplifying, we get that

M(x,m, `, p) = 2
1− 2`+ x2 − px2 +m+

√
(m+ px2 − 1− x2)2 − 4x2

.

Corollary 2.2. The generating function for p(0)
n,k, the number of peakless Motzkin

paths of length n having exactly k marked flats, is xkpk+1(x) where

p(x) = (1− x+ x2)−
√

1− 2x− x2 − 2x3 + x4

2x2 .

Thus, pn,k, the (n, k)-th entry of the Riordan array in equation (3), is equal to p(0)
n,k.

Proof. We will show that the generating function for the sequence {|P(0)
n,k|}∞n=0 is(

`k

k!
∂k

∂`k
M(x, x, `, 0)

)∣∣∣∣∣
`=x
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Given a peak-less Motzkin path m ∈ Pn,0 it contributes some weight xamb`c to
M(x,m, `, 0). If we want to count the how many different ways there are to mark k
of its flats, then we count the number of ways to pick k of its c flats. Thus the total
weight every of peak-less marked Motzkin paths with exactly k marked flats that we
can obtain from m is(

c

k

)
xamb`cpd = c(c− 1) · · · (c− k + 1)

k! xamb`c = `k

k!
∂k

∂`k

(
xamb`c

)
.

Summing these over all peak-less Motzkin paths, give us the multivariate generating
function for k-marked flat peak-less Motzkin paths.

Since only the total length of the path matters, m and ` is placed with x, which gives
the total length of the path. However, since we must take the derivative with respect
to ` of the function and no other variable, the substitution of x into ` must be done
afterwards.

Thus the generating function for the sequence {|P(0)
n,k|}∞n=0 is(

`k

k!
∂k

∂`k
M(x, x, `, 0)

)∣∣∣∣∣
`=x

Now, we will show that(
`k

k!
∂k

∂`k
M(x, x, `, 0)

)∣∣∣∣∣
`=x

= xkpk+1(x)

where
p(x) = (1− x+ x2)−

√
1− 2x− x2 − 2x3 + x4

2x2 .

First, notice that, by Theorem 2.1, M(x, x, `, 0) = 2(β(`))−1 where

β(`) = (1− 2`) + x+ x2 +
√

1− 2x− x2 − 2x3 + x4.

It is easy to show by induction that

∂k

∂`k
M(x, x, `, 0) = ∂k

∂`k
2β−1(`) = 2k+1k!β−(k+1)(`)
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Therefore, we have(
`k

k!
∂k

∂`k
M(x, x, `, 0)

)∣∣∣∣∣
`=x

=
(
`k

k!2
k+1k!β−(k+1)(`)

)∣∣∣∣∣
`=x

= xk2k+1β−(k+1)(x)

= 2k+1xk
(
1− x+ x2 +

√
1− 2x− x2 − 2x3 + x4

)−(k+1)

= xk
(

2
1− x+ x2 +

√
1− 2x− x2 − 2x3 + x4

)k+1

= xkpk+1(x)

3. An involution on pairs of peakless marked base Motzkin
paths

As in Section 1, we let pn,k denote the (n, k)th entry of the Riordan array (3). We
showed in Section 2 that pn,k = p

(0)
n,k, the number of peakless Motzkin paths of length

n having exactly k marked flats. We now turn to the first objective of this paper,
which is to provide a combinatorial proof of the following identity. Given fixed n, l,

∞∑
k=0

(−1)k+lpn,k pk,l =

1, if n = l

0, otherwise
(4)

This identity is a direct algebraic consequence of Proposition 1.1. However, we wish to
prove identity (4) combinatorially, thereby providing means to generalize the identity
for a class of arrays in Section 4. To accomplish this task, we will construct an sign-
reversing involution α∗n,` on the set of pairs of base marked Motzkin paths having k
and l marked flats, respectively. Figure 1 summarizes how α∗n,` works.

We begin by constructing a map S which creates signed marked Motzkin paths from
pairs of base marked Motzkin paths.

Definition 3.1. A signed marked Mozkin path is a Mozkin path where each step is
designated as being either positive (+) or negative (−).



Peakless Motzkin paths with marked level steps 10

S(M1,M2) αn,`(S(M1,M2))

(M1,M2) (N1, N2)

αn,`

S−1S

α∗
n,`

Figure 1: Given M1 ∈ P(0)
n,k and M2 ∈ P(0)

k,` , α∗n,` is the composition of signed
substitution S (as in Definition 3.3), αn,`, and the unique decomposition from
Lemma 3.11.

Example 3.2. Here are some examples of signed marked Motzkin paths, where
marked levels have a vertical mark in the middle.

+ − + − − + − +

U+U−D+L−D−U+M−D+

− + + − + + −

U−U+U+M−D+D+D−

+ + − − + − +

U+U+M−L−D+M−D+

Definition 3.3. LetMn,k denote the set of marked Motzkin paths of length n with
k marked level steps (at any height). Given marked Motzkin paths M1 ∈ Mn,k and
M2 ∈ Mk,` we define the signed substitution S(M1,M2) of M2 into M1 to be
the signed marked Motzkin path obtained by first replacing the ith mark level step
of M1 with the ith step of M2 for 1 ≤ i ≤ k, and then designating every position in
S(M1,M2) where replacement occurred with as negative and all others as positive.

Note that we will also use S as a function from Mn,k ×Mk,` to the set of signed
paths. Formally this should be written as S((M,N)) where (M,N) ∈ Mn,k ×Mk,`,
however to avoid extra parenthesis we shall write this as S(M,N) as well.

Example 3.4. Here are some examples of signed substitution S, where marked levels
have a vertical mark in the middle.
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M1 M2

+ − + −

S(M1,M2) N1 N2

− + − + −

S(N1, N2)

W1 W2

+ − − + −

S(W1,W2)

Theorem 3.5. Given marked Motzkin paths M ∈Mn,k and N ∈Mk,`, the sequence
of unsigned up and down steps given by S(M,N) is a marked Motzkin path of length
n with ` marked steps.

Proof. By substitution, the number of marked steps in S(M,N) will be `. Since all
the marked steps in M are replaced by the steps in N , a step will be marked if and
only if it is a marked step in M replaced by a marked step in N . Since M has `
marked step, S(M,N) will have ` marked steps.

Now it remains to show that S(M,N) is a Motzkin path. It suffices to show that at
any point along the path that the number of down steps does not exceed the number
of up steps, and that the number of downs steps equals the number of up steps.

Let Xi be the ith step of S(M,N), Mi be the ith step of M and Ni be the ith step
of N . Let ui be the number of up steps that occur up to and including Xi and di
be the number of down steps that occur up to and including Xi Every up or down
step in S(M,N) either came from form M1 and is a positive step, or came from M2
and is a negative step. Let u+

i be the number of positive up steps that occur up to
and including Xi and d+

i be the number of positive down steps that occur up to and
including Xi. Similarly, let u−i be the number of negative up steps that occur up to
and including Xi and d+

i be the number of negative down steps that occur up to and
including Xi. Then u+

i + u−i = ui and d+
i + d−i = di for all 0 ≤ i ≤ n.

Since the up and down steps in M appear as positive up and positive down steps and
every positive step came from M , the number of up steps in M up to and including
Mi is u+

i and the number of down steps in M up to and including Mi is d+
i . Since

M is a Motzkin path the number of down steps does not exceed the number of up
steps at any point and the number of up is equal to the number of down steps. Thus
d+
i ≤ u+

i and d+
n = u+

n .



Peakless Motzkin paths with marked level steps 12

Consider step Nk where k = u−i + d−i . Which is to say that the number of steps up
in N up to and including Nk is equal to the number negative step in S(M,N) up to
and including Xi.

Since N is a marked Motzkin path the number of down steps does not exceed the
number of up steps at any point, and the number of up steps in N is equal to the
number of down steps in N . Since the up and down steps in N appear as negative
up and negative down steps and every negative step came from N , the number of up
steps up to and including Nk is u− and the number of down steps up to and including
Nk is d−. Thus d−i ≤ u−i and d−n = u−n .

Thus

di = d+
i + d−i ≤ u+

i + u−i = ui and dn = d+
n + d−n = u+

n + u−n = un.

Thus at every point on the path S(M,N) the number of down steps never exceeds
the number of up steps and contains the same number of up and down steps.

Thus the sequence of signed up and down steps given by S(M,N) is a marked Motzkin
path of length n with ` marked steps.

Lemma 3.6. Given a marked base Motzkin path M ∈ Mn,k and a marked Motzkin
path N ∈ Mk,`, let the signed substitution of N into M be given by S(M,N). Then
for every tunnel (U∗, D∗) in S(M,N), U∗ and D∗ have the same sign.

Proof. We proceed by contradiction. Suppose that S(M,N) has a tunnel (U∗, D∗)
such that U∗ and D∗ have different sign. Let Xi be the ith step of S(M,N), Mi be
the ith step of M and Ni be the ith step of N . Suppose Xu = U∗ and Xd = D∗.

We first consider the case where the U∗ is a positive and the D∗ is a negative. Since
Xd is a negative down step, Md is a marked flat in M , since M is a marked base
Motzkin path. Furthermore, Mu is a positive up step. Now considerMu andMd, and
the tunnel T that contains Mu. The other step in T must occur before or after Md

since it can’t be Md itself.

It can not occur after Md since that would imply that the flat had height at least
one. Thus is must occur before Md. But if that is the case, then after substitution,
the Xu would be paired with the corresponding down step from M and not with Xd.

Thus there can not be a tunnel of a positive up step with a negative down step.

By symmetry, there also can not be a tunnel of a negative up step with a positive
down step.
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Thus for every tunnel (U∗, D∗) in S(M,N), U∗ and D∗ have the same sign when M
and N is a marked base Motzkin paths.

We now proceed to construct an involution αn,` on the set of signed substitutions of
pairs of marked Motzkin paths.

Definition 3.7. Let C be a signed marked Motzkin path. First, we say that a level
step L∗ of C is the key level step if L∗ is the first unmarked level step (read left
to right) of C such that every unmarked level step that occurs after L∗ has equal or
greater height. Then we define a function αn,` on signed marked Motzkin paths of
length n having l marked level steps such that αn,`(C) is the path obtained by doing
the following:

1. Find the key level step in C (if it exists; if not, αn,`(C) = C);

2. Switch the sign of the key level step;

3. Switch the sign of both steps in all tunnels (U∗, D∗) of C which contain both
the key level step and at most one negative level step;

4. Maintain all other steps of C.

Example 3.8. Here are some examples of signed marked Motzkin paths, where
marked level steps have a vertical mark in the middle and the key level step is circled.

+ − − +

U+L−L−D+

+ − − +

U+M−L−D+

+ + + − − − −

U+L+D+M−U−L−D−

+ − + + + − +

U+L−D+L+U+L−D+

+ + − − − +

U+L+U−L−D−D+

Example 3.9. Here are examples of αn,` applied to signed Motzkin paths.
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− + + + − −

C1

+ + + + + +

α6,3(C1)

− − + + + −

C2

+ + + + + +

α6,3(C2)

− − − − + + + −

C3

+ + + + + + + +

α8,5(C3)

− − − −

C4

− + − −

α4,4(C4))

− − + −

C5

+ + + +

α4,3(C5)

− − − − − − + − −

C6

− + + + − − + − −

α9,8(C6)

X1X2X3X4X5X6X7X8X9
M1

Y1 Y2 Y3
M2

Z1Z2Z3Z4Z5Z6Z7Z8Z9
N1

W1W2W3W4W5W6
N2

+ + + + + + − − −

A1A2A3A4A5A6A7A8A9
X1X2X3X4X5X6Y1 Y2 Y3

S(M1,M2)

α9,3
− − − + + + − − −

B1B2B3B4B5B6B7B8B9
W1W2W3Z4Z5Z6W4W5W6

α9,3(S(M1,M2))
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Definition 3.10. Given n, ` ≥ 0, let

Ψn,` =
n⋃
k=`

(
P(0)
n,k × P

(0)
k,`

)
.

and let

S(Ψn,`) = {S (M,N) |M ∈ P(0)
n,k, N ∈ P

(0)
k,` for some k where ` ≤ k ≤ n}

denote the image of Ψn,` under the signed substitution function S.

Lemma 3.11. Given an element (M1,M2) ∈ Ψn,`, there exists a unique element
(N1, N2) ∈ Ψn,` such that

S(N1, N2) = αn,`(S(M1,M2))

Hence, since S(Ψn,`) is finite, the function αn,` : S(Ψn,`)→ S(Ψn,`) is a bijection.

Proof. Let M1 ∈ P(0)
n,k, M2 ∈ P(0)

k,` and consider the signed marked Motzkin path
S(M1,M2). Let Xi be the ith step of M1, Yi be the ith step of M2, Ai be the ith step
of S(M1,M2), and Bi be the ith step of αn,`(S(M1,M2)). That is,

M1 = X1 · · ·Xn

M2 = Y1 · · ·Yk
S(M1,M2) = A1 · · ·An

αn,`(S(M1,M2)) = B1 · · ·Bn

Construction of N1, N2: Observe by definition of signed substitution that S(M1,M2)
has exactly ` marked level steps, each of which is negative. Since αn,` doesn’t add
or remove steps and doesn’t change the sign of marked level steps, we have that
αn,`(S(M1,M2)) must have length n and `marked level steps all of which are negative.

Define N1 := Z1 · · ·Zn, where Zi is an unsigned marked level step if Bi is a negative
step, and an unsigned step of the same type as Bi if Bi is a positive step.

In order to defineN2, first let k∗ denote the number of negative steps in αn,`(S(M1,M2)).
Then consider the set {j1, · · · , jk∗} of indices of the negative steps of αn,`(S(M1,M2)),
where j1 < · · · < jk∗ . We can now define N2 := W1 · · ·Wk∗ where Wi is an unsigned
step of the same type as Bji .

By construction, we see that N1 has length n with k∗ marked level steps, and N2 has
length k∗ with ` marked level steps. Furthermore, by observation of αn,`(S(M1,M2)),
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N1 and N2 are the only paths that could be combined via signed substitution to form
αn,`(S(M1,M2)). It suffices to show that N1 ∈ P(0)

n,k∗ and N2 ∈ P(0)
k∗,`.

N1 and N2 are marked Motzkin paths: To show that N1 and N2 are marked Motzkin
paths it suffices to show that at any point along the path that the number of down
steps does not exceed the number of up steps, and that the number of downs steps
equals the number of up steps.

By Theorem 3.5 we know that S(M1,M2) is a marked Motzkin path. Since αn,` only
changes the signs of steps, we know that αn,`(S(M1,M2)) is also a signed marked
Motzkin path. By theorem 3.6 we have that for every tunnel (U∗, D∗) in S(M1,M2),
the two steps have the same sign. Observe that if αn,` changes the sign of one of
the steps in the tunnel it must change the other. Thus for every tunnel (U∗, D∗) in
αn,`(S(M1,M2)), the two steps have the same sign.

For each i = 1, . . . , n, let u+
i , u−i , d+

i , and d−i be the number of positive up steps,
negative up step, positive down steps, and negative up step that occur up to and
including Bi in αn,`(S(M1,M2)) respectively. Consider all down steps that occur up
to and including Bi. Consider all the tunnels that contain these down steps. Each
of these tunnels contain a up step of the same sign as the down step. Thus for every
down step up to and including Bi there is a corresponding up step of the same sign
which is also before Bi, and so we have that d+

i ≤ u+
i and d−i ≤ u−i . When i = n we

have that d+
n = u+

n and d−n = u−n since every down step in the entire path has been
accounted for and every down step is in a tunnel with an up step.

By construction, the number of up steps and down steps preceding Zi in N1 is u+
i

and d+
i respectively, so N1 is a marked Motzkin path. Similarly, by construction, the

number of up steps and down steps preceding Wi in N2 is u−ji and d
−
ji respectively, so

N2 is a marked Motzkin path.

N1 and N2 are based marked: We will show that every marked level step in N1 and
N2 has height zero.

First, we consider N2. If Wi is a marked level step in N2, then Bji is a negative
marked level step in αn,`(S(M1,M2)) Since αn,` only changes the signs of steps and
doesn’t change the sign of marked level steps, Aji must be a negative marked level
step in S(M1,M2). If Aji is a negative marked level step, it must be the result of
substituting a marked level step of M1 with a marked level step of M2.

Since M2 and M1 are both based marked, the number of up and down steps that
come before the marked level step inM2 must be equal. Thus the number of negative
up and negative down steps that come before Aji in S(M1,M2) are equal. Since the
marked level step in M2 replaces a marked flat in M1 the number of positive up and
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positive down steps that come before Aji in S(M1,M2) are equal. Thus Aji has height
zero in S(M1,M2). Thus Bji has height zero in αn,`(S(M1,M2)). Since the number
of negative up and negative down steps that come before Bji in αn,`(S(M1,M2)) are
equal, Wi has height zero in N2. Thus N2 is based marked.

Now we consider N1. We want to show that every marked level step in N1 has height
zero. If Zi is a marked level step in N1, then Bi is a negative step in αn,`(S(M1,M2))
and Ai is either a positive step or negative step in S(M1,M2). So we have two cases
to consider:

1. Ai is a negative step. Then Xi is a marked level step in M1. Since M1 is based
marked, Xi has an equal number of up and down steps before it. This means
Ai has an equal number of positive up and positive down steps before it. Since
αn,` changes the signs of up and down steps in pairs Bi has an equal number of
positive up and positive down steps before it. Thus Zi is preceded by an equal
number of up and down steps, meaning Zi has height zero.

2. Ai is a positive step. Suppose towards a contradiction that Xi does not have
height zero. Then there are more up steps then down steps before Xi. Thus
there are more positive up steps before Bi than positive down steps. Thus there
is a tunnel (Bu, Bv) that contains Bi such that Bu and Bv are positive steps.
Thus there is a tunnel (Au, Av) that contains Ai. Since Ai is a positive step
and Bi is a negative step Ai must be an up or down step. Furthermore, the
key level step must be a positive step, since αn,` switch a step from positive to
negative. Thus Au and Av must also be positive steps since otherwise we would
simultaneously have αn,` turn a negative step into a positive step. Without loss
of generality suppose that Ai is a down step. Thus there is a tunnel (Aw, Ai)
where Aw is a positive step. We observe that (Au, Av) must contain Aw as well.
Since αn,` changed the sign of step Ai it must be that (Aw, Ai) contains the key
level step. Thus (Au, Av) contains the key level step, which is a positive step.
Since Au and Av are positive, it must be that Bu and Bv are negative steps, a
contradiction. Thus Xi has height zero. Thus Xi is a marked flat. Thus N1 is
based marked.

N1 and N2 are peakless: Suppose towards a contradiction that N1 had a down step
occur immediately after an up step. Then there are steps Zi and Zi+1 such that Zi is
an up step and Zi+1 is a down step. Thus Bi and Bi+1 are a positive up and positive
down step respectively. Thus Ai and Ai+1 are a positive up and positive down step
respectively since they can’t contain the key level step. Thus Xi and Xi+1 are an up
and down step respectively. But then M1 has a peak, a contradiction. Thus N1 is
peakless.
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Suppose towards a contradiction that N2 had a down step occur immediately after an
up step. Then there are steps Wi and Wi+1 such that Wi is an up step and Wi+1 is a
down step. Thus Bji and Bji+1 are a negative up and negative down step respectively.
Observe that every step Bu where ji < u < ji+1 must be a positive step and therefore
(Bji , Bji+1) is a tunnel.

Thus (Aji , Aji+1) is a tunnel. Now either (Aji , Aji+1) contains the key level step in
S(M1,M2) or it doesn’t. So we have two cases to consider:

1. (Aji , Aji+1) does not contain the key level step. Then the signs of Aji and Aji+1

would not change, nor would any step that they contain. Thus Aji and Aji+1

are negative steps with no negative steps between them. Thus there would be
steps Yu and Yu+1 that are an up and down step respectively. Thus M2 would
have a peak, a contradiction.

2. (Aji , Aji+1) contains the key level step Ai∗ . Suppose the key level step was a
positive step. Then Bi∗ is a negative step such that ji < i∗ < ji+1, which
contradicts that every step between Bji and Bji+1 is a positive step. Thus the
key level step is a negative step. Observe that Aji and Aji+1 must be negative
step since otherwise they would be positive steps with a negative key step which
would mean that Bji and Bji+1 would be positive steps.
Furthermore, (Aji , Aji+1) must contain a negative step Ai∗∗ other the key level
step since otherwise by αn,`, Bji and Bji+1 would be positive steps. But then
Bi∗∗ is a negative step contain in (Bji , Bji+1) a contradiction.

Thus the key level step can be neither positive nor negative, which is impossible.
Therefore, N2 must be peakless.

We have concluded thatN1 andN2 are peakless base marked Motzkin paths withN1 ∈
P(0)
n,k∗ and N2 ∈ P(0)

k∗,`. As a consequence we see that Im(αn,`|S(Ψn,`)) ⊆ S(Ψn,`).

Example 3.12. Here are a number of examples of signed substitutions of Motzkin
paths being put through αn,` and being decomposed:
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M1 M2 N1 N2

− + + + − −

S(M1,M2)

+ + + + + +

αn,`(S(M1,M2))

M1 M2 N1 N2

+ + + + + +

S((M1,M2))

− + + + − −

αn,`(S((M1,M2)))

M1 M2 N1 N2

+ + + + + − − − −

S(M1,M2)

+ + + + + − + − −

αn,`(S(M1,M2))



Peakless Motzkin paths with marked level steps 20

Lemma 3.13. For all n, `, the function αn,` is an involution on S(Ψn,`).

Proof. This is a direct corollary of lemma 4.4.

Finally, to achieve the objective of this section, we will associate a “sign” v with each
element of Ψn,` and show that α∗n,` is a sign-reversing involution on Ψn,`. In fact, we
will show that α∗n,` is a sign-reversing involution on

Ψ(h)
n,` :=

n⋃
k=`

(
P(0)
n,k × P

(h)
k,`

)
.

Definition 3.14. Given ` ≤ k ≤ n and a pair (M,N) ∈ P(0)
n,k × P

(h)
k,` we define the

function v such that
v (M,N) = (−1)k+`

Thus v is −1 if the total number of marked level steps in the pair (M,N) is odd, and
1 otherwise.

Theorem 3.15. Let α∗n,` be the function on Ψn,` such that α∗n,`((M1,M2)) = (N1, N2)
from Lemma 3.11. Then α∗n,` is an involution of Ψn,` such that for any (M1,M2) ∈
Ψn,` either α∗n,`(M1,M2) = (M1,M2) or v(α∗n,`(M1,M2)) = −v(M1,M2).

Proof. This is a direct corollary of 4.5.

Lemma 3.16. Let F be the set of fixed points of α∗n,` : Ψ(h)
n,` → Ψ(h)

n,`. That is,

F = {(M,N) ∈ Ψ(h)
n,` | α∗n,`(M,N) = (M,N)}

. Then ∑
(M,N)∈Ψ(h)

n,`

v(M,N) =
∑

(M,N)∈F
v(M,N)

Proof. This is a direct corollary of 4.6.

Lemma 3.17. Given (M1,M2) ∈ Ψn,` we have that α∗n,`(M1,M2) = (M1,M2) if and
only if M1 = M2 is the peakless marked base Motzkin path consisting of exactly n
marked flats in a row.
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Proof. Suppose that M1 and M2 are the same peakless marked base Motzkin paths
of exactly n marked flats in a row. Then S(M1,M2) is a path of n marked flats all
signed with negative. Thus S(M1,M2) has no unmarked level step, and thus no key
level step. Thus αn,`(S(M1,M2)) = S(M1,M2). Since the decomposition is unique
α∗n,`(M1,M2) = (M1,M2).

Now conversely, suppose that α∗n,`(M1,M2) = (M1,M2). Then it must be that
αn,`(S(M1,M2)) = S(M1,M2). This can only happen if there is no key level steps
since otherwise that step would switch sign and there would be a different pair. Thus
M1 and M2 have no unmarked level steps.

Additionally M1 and M2 have no up or down steps. Suppose they did. Then they
must have a tunnel. But every tunnel of a based marked peakless path must contain
an unmarked level step. If the tunnel didn’t, then it would either contain a marked
level step which violates the based marked condition, or it would contain only up and
down steps which would imply the existence of a peak witch violates the peakless
condition. Thus M1 and M2 can’t have any tunnels. And so M1 and M2 have no up
or down steps.

Thus M1 and M2 have only marked level steps. Since M1 has n steps, it therefore
must have n marked flats, and soM1 ∈ P(0)

n,n. In ordered forM2 to be substituted into
M1 it must have length equal to the number of marked steps in M1, thus M2 ∈ P(0)

n,` .
Since M2 has only marked level steps we also have that ` = n. And so M1,M2 ∈ P(0)

n,n

and contain only marked level steps.

Theorem 3.18. Let n, ` be any non-negative integers and pn,k be the number of
peakless Motzkin paths of length n having exactly k marked level steps occurring on
the x-axis. Then

∞∑
k=0

(−1)k+`pn,k pk,` =
{

1 if n = `
0 if n 6= `

Proof. First, observe that since pn,k = 0 if k > n and pk,` = 0 if ` > k, we know that
pn,kpk,` = 0 unless ` ≤ k ≤ n. Hence,

∞∑
k=0

(−1)k+`pn,k pk,` =
n∑
k=`

(−1)k+`pn,k pk,` =
n∑
k=`

∑
(M,N)∈P(0)

n,k
×P(0)

k,`

v(M,N) (5)

=
∑

(M,N)∈Ψn,`

v(M,N) (6)
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From Lemma 3.16 with h = 0, we know that∑
(M,N)∈Ψn,`

v(M,N) =
∑

(M,N)∈F
v(M,N)

From Lemma 3.17 we know that F is non-empty if and only if n = `, so

∑
(M,N)∈Ψn,`

v(M,N) =


∑

(M,N)∈F
v(M,N), if n = `

0, if n 6= `

If n = `, then F contains exactly one element, i.e., the pair (M,N) where both M
and N consist of n = ` marked flats. In this case, v(M,N) = (−1)2n = 1. Hence,
with these observations, equation (6) leads us to the result:

∞∑
k=0

(−1)k+`pn,k pk,` =

1 if n = `

0 if n 6= `

4. An involution on pairs of peakless Motzkin paths marked
at fixed height

In the section, we will extend the result in Theorem 3.18 by considering pairs of paths
(M,N) where M ∈ P(0)

n,k and N ∈ P(h)
k,` for any non-negative integer h.

Definition 4.1. Given n, ` ≥ 0, let

Ψ(h)
n,` =

n⋃
k=`

(
P(0)
n,k × P

(h)
k,`

)
.

and let

S
(
Ψ(h)
n,`

)
= {S (M,N) |M ∈ P(0)

n,k, N ∈ P
(h)
k,` for some k where ` ≤ k ≤ n}

That is, S
(
Ψ(h)
n,`

)
is the set of all signed substitutions that result from substituting

a peakless marked Motzkin path of length k and ` marked level steps, where every
marked level step has height h, into a peakless marked base Motzkin path of length
n with k marked flats.
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Example 4.2. Here are a few examples of α(h)
n,` acting on S(M,N) where M ∈ P(0)

n,k

and N ∈ P(h)
k,` for some fixed h.

− + + + − − −

S(M,N)

− + + + + − −

α1
n,`(S(M,N))

− + + + − −

S(M,N)

− − − − − −

α1
n,`(S(M,N))

− + + + − − −

S(M,N)

− + + + − − +

α1
n,`(S(M,N))

− + + + − − − − + + + −

S(M,N)

− + + + + − − − + + + −

α2
n,`(S(M,N))

Lemma 4.3. Given (M1,M2) ∈ Ψ(h)
n,` there exists a unique element (N1, N2) ∈ Ψ(h)

n,`

such that
S(N1, N2) = α

(h)
n,`(S(M1,M2))

Proof. Consider the signed marked Motzkin path S(M1,M2). Let Xi be the ith step
of M1, Yi be the ith step of M2, Ai be the ith step of S(M1,M2), and Bi be the ith
step of α(h)

n,`(S(M1,M2)).

Observe by definition of signed substitution that every marked level step in S(M1,M2)
must be a negative step. Since α(h)

n,` doesn’t add or remove steps and doesn’t change
the sign of level steps, we have that α(h)

n,`(S(M1,M2)) must have length n and ` marked
level steps all of which are negative.

Then we define N1 to be the sequence of steps Z1 · · ·Zn, where Zi is an unsigned
marked level step if Bi is a negative step, and an unsigned step of the same type as
Bi if Bi is a positive step.

In order to defineN2 we first let k denote the number of negative steps in α(h)
n,`(S(M1,M2).

We may then consider the set {j1, · · · , jk} to be the set of indices of the negative steps
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of α(h)
n,`(S(M1,M2) where j1 < · · · < jk. We can now define N2 to be the sequence of

steps W1 · · ·Wk where Wi is an unsigned step of the same type as Bji .

By the observations of α(h)
n,`(S(M1,M2)) we have that N1 has length n with k marked

level steps, and N2 has length k with ` marked level steps.

Observe that by construction N1 and N2 are the only paths that could be combined
via signed substitution to form α

(h)
n,`(S(M1,M2)). It suffices to show that N1 ∈ P(0)

n,k

and N2 ∈ P(h)
k,` .

To show that N1 and N2 are marked Motzkin paths it suffices to show that at any
point along the path that the number of down steps does not exceed the number of
up steps, and that the number of downs steps equals the number of up steps.

By theorem 3.5 we know that S(M1,M2) is a marked Motzkin path. Since α(h)
n,` only

changes the signs of steps, we know that α(h)
n,`(S(M1,M2)) is also a signed marked

Motzkin path. By theorem 3.6 we have that for every tunnel (U∗, D∗) in S(M1,M2),
the two steps have the same sign. Observe that if α(h)

n,` changes the sign of one of
the steps in the tunnel it must change the other. Thus for every tunnel (U∗, D∗) in
α

(h)
n,`(S(M1,M2)), the two steps have the same sign.

Let u+
i , u−i , d+

i , and d−i be the number of positive up steps, negative up step, positive
down steps, and negative up step that occur up to and including Bi in α(h)

n,`(S(M1,M2))
respectively.

Consider step Bi. Consider all down steps that occur up to and including Bi. Consider
all the tunnels that contain these down steps. Each of these tunnels contain a up step
of the same sign as the down step. Thus for every down step up to and including Bi

there is a corresponding up step of the same sign which is also before Bi, and so we
have that d+

i ≤ u+
i and d−i ≤ u−i . When i = n we have that d+

n = u+
n and d−n = u−n

since every down step in the entire path has been accounted for and every down step
is in a tunnel with an up step.

By construction the number of up steps and down steps up to and before Zi in N1 is
u+
i and d+

i respectively. Thus N1 is a marked Motzkin path.

By construction the number of up steps and down steps in up to and before Wi in
N2 is u−ji and d

−
ji respectively. Thus N2 is a marked Motzkin path.

We now show that N1 is based marked and N2 has marked sideways steps only at
height h.

Consider a marked level step Wi in N2. Then Bji is a negative marked level step in
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α
(h)
n,`(S(M1,M2))

Consider step Aji , since α
(h)
n,` only changes the sign of a step, Sji must also be a marked

level step. Furthermore Aji must be a negative step since αhn,j doesn’t change the sign
of marked level steps. Thus Aji is a negative marked level step in S(M1,M2). Since
Aji is a negative marked level step, it must be the result of substituting a marked
level step from M2 into a marked level step from M1.

Since M1 ∈ P(0)
n,k and M2 ∈ P(h)

k,` , the difference of up and down steps that come
before the marked level step in M2 must be h. Thus the difference of negative up
and negative down steps that come before Aji in S(M1,M2) is h. Since the marked
level step inM2 is substituted into a marked flat inM1 the number of positive up and
positive down steps that come before Aji in S(M1,M2) are equal. Thus Aji has height
h in S(M1,M2). Thus Bji has height h in α

(h)
n,`(S(M1,M2)). Since the difference of

negative up and negative down steps that come before Bji in α(h)
n,`(S(M1,M2)) is h,

Wi has height h in N2 Thus the marked level step in N2 is at height h.

Thus N2 ∈ P(h)
k,` .

Consider a marked level step Zi in N1. Then Bi a negative step in α(h)
n,`(S(M1,M2)).

Now Ai is either a positive step or negative step in S(M1,M2). We break the problem
in cases:

Case 1: Ai is a negative step. Then Xi is a marked level step in M1. Since M1 is
based marked, Xi has an equal number of up and down steps before it. Thus Ai has
an equal number of positive up and positive down steps before it. Thus Bi has an
equal number of positive up and positive down steps before it since α(h)

n,` changes the
signs of up and down steps in pairs. Thus Zi has an equal number of up and down
steps before it. Thus Zi is a marked flat.

Case 2: Ai is a positive step. Suppose towards a contradiction that Xi does not have
height zero. Then there are more up steps then down steps before Xi. Thus there
are more positive up steps before Bi than positive down steps. Thus there is a tunnel
(Bu, Bv) that contains Bi such that Bu and Bv are positive steps.

Thus there is a tunnel (Au, Av) that contains Ai. Since Ai is a positive step and Bi is
a negative step Ai must be an up or down step. Furthermore, the key level step must
be a positive step, since α(h)

n,` switch a step from positive to negative. Thus Au and Av
must also be positive steps since otherwise we would simultaneously have α(h)

n,` turn
a negative step into a positive step. Without loss of generality suppose that Ai is a
down step. Thus there is a tunnel (Aw, Ai) where Aw is a positive step. We observe
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that (Au, Av) must contain Aw as well. Since α(h)
n,` changed the sign of step Ai it must

be that (Aw, Ai) contains the key level step. Thus (Au, Av) contains the key level
step, which is a positive step. Since Au and Av are positive, it must be that Bu and
Bv are negative steps, a contradiction.

Thus Xi has height zero. Thus Xi is a marked flat. Thus N2 is based marked.

We now show that N1 and N2 are peakless.

Suppose towards a contradiction that N1 had a down step occur immediately after an
up step. Then there are steps Zi and Zi+1 such that Zi is an up step and Zi+1 is a down
step. Thus Bi and Bi+1 are a positive up and positive down step respectively. Thus
Ai and Ai+1 are a positive up and positive down step respectively since they can’t
contain the key level step. Thus Xi and Xi+1 are an up and down step respectively.
But then M1 has a peak, a contradiction. Thus N1 is peakless.

Suppose towards a contradiction that N2 had a down step occur immediately after an
up step. Then there are steps Wi and Wi+1 such that Wi is an up step and Wi+1 is a
down step. Thus Bji and Bji+1 are a negative up and negative down step respectively.
Observe that every step Bu where ji < u < ji+1 must be a positive step and therefore
(Bji , Bji+1) is a tunnel.

Thus (Aji , Aji+1) is a tunnel. Now either (Aji , Aji+1) contains the key level step in
S(M1,M2) or it doesn’t. We break the problem into cases:

Case 1: (Aji , Aji+1) does not contain the key level step. Then the signs of Aji and
Aji+1 would not change, nor would any step that they contain. Thus Aji and Aji+1

are negative steps with no negative steps between them. Thus there would be steps
Yu and Yu+1 that are an up and down step respectively. Thus M2 would have a peak,
a contradiction.

Case 2: (Aji , Aji+1) contains the key level step Ai∗ . Suppose the key level step was a
positive step. Then Bi∗ is a negative step such that ji < i∗ < ji+1, which contradicts
that every step between Bji and Bji+1 is a positive step. Thus the key level step is
a negative step. Observe that Aji and Aji+1 must be negative step since otherwise
they would be positive steps with a negative key step which would mean that Bji

and Bji+1 would be positive steps. We also have that (Aji , Aji+1) can not contain a
marked step since otherwise the marked step would be a negative step, and so there
would be a corresponding negative marked step that was contained by (Bji , Bji+1).

Furthermore, (Aji , Aji+1) must contain a negative step Ai∗∗ other the key level step
since otherwise by α

(h)
n,` , Bji and Bji+1 would be positive steps. But then Bi∗∗ is a

negative step contain in (Bji , Bji+1) a contradiction. Thus the key level step can be
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neither positive nor negative, which is impossible.

Thus N2 is peakless.

Thus N1 and N2 are peakless base marked Motzkin paths. As a consequence we see
that for all Im(α(h)

n,`) ⊆ S
(
Ψ(h)
n,`

)
.

Lemma 4.4. For all n ≥ `, h ≥ 0 the function α(h)
n,` is an involution on S

(
Ψ(h)
n,`

)
.

Proof. Given an arbitrary element S(M,N) ∈ S
(
Ψ(h)
n,`

)
there are three cases to con-

sider: the key level step doesn’t exist, the key level step exists and is a positive step,
and the key level step exists and is a negative step.

Case 1: Suppose the key level step doesn’t exist. Then α
(h)
n,`(S(M,N)) = S(M,N),

and so
α

(h)
n,`(α

(h)
n,`(S(M,N))) = S(M,N).

Case 2: Suppose the key level step exists and is a positive step. It suffices to show
that every step has the same sign when α

(h)
n,` is applied twice. Observe that every

step is exactly one of the following types: the key level step, level steps that are not
the key level step, steps in tunnels that don’t contain the key level step or contain a
marked level step, and steps in tunnels that contain the key level step and no marked
level steps.

Consider the key level step. Then it switches sign every time α(h)
n,` is applied, and so

it switches signs twice. Thus the key level step has the same sign in both S(M,N),
and α(h)

n,`(α
(h)
n,`(S(M,N))).

Consider level steps that are not the key level step. Since α(h)
n,` only changes the sign

of the key level steps and tunnels, these are unaffected by α(h)
n,` . Thus they have the

same sign in S(M,N) and α(h)
n,`(α

(h)
n,`(S(M,N))).

Consider steps in tunnels that don’t contain the key level step or contain a marked
level step. Recall that α(h)

n,` can only change the sign of steps in a tunnel if the tunnel
contains key step and no marked level steps. Since these tunnels don’t they are un-
affected by α(h)

n,` . Thus they have the same sign in S(M,N) and α(h)
n,`(α

(h)
n,`(S(M,N))).

Consider steps in tunnels that do contain the key level step and no marked level
steps. Suppose that both steps in a given tunnel are positive steps. Observe that the
tunnel contains no negative steps since that would contradict the fact thatM is based
marked. Since the key level step is a positive step and we have a tunnel of positive
steps that contain it, the key level step and the steps in the tunnel will becomes
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negative steps after applying αn,`. Now the tunnel has negative steps and contains
exactly one negative step which is the key level steps. Thus the steps in the tunnel
will become positive steps after applying α(h)

n,` . Thus tunnels with positive steps that
contain the key level step have the same sign in S(M,N) and α(h)

n,`(α
(h)
n,`(S(M,N))).

Suppose that both steps in a given tunnel are negative steps. Observe that the tunnel
contains a negative sideways step since otherwise N would have a peak. Since the
key level step and steps in the tunnel are of opposite sign the steps in the tunnel are
not changed by applying α(h)

n,` .

After applying α(h)
n,` the key level step is a negative step, but the tunnel now contains

at least two negative steps, and so the sign of the steps in the tunnel won’t change
after applying α(h)

n,` again. Thus tunnels with negative steps that contain the key level
step have the same sign in S(M,N) and α(h)

n,`(α
(h)
n,`(S(M,N))).

Thus every step in S(M,N) will remain the same when α(h)
n,` is applied twice. Thus

α
(h)
n,`(α

(h)
n,`(S(M,N))) = S(M,N).

Case 3: Suppose the key level step exists and is a negative step. It suffices to show
that every step has the same sign when α

(h)
n,` is applied twice. Observe that every

step is exactly one of the following types: the key level step, level steps that are not
the key level step, steps in tunnels that don’t contain the key level step or contain a
marked level step, and steps in tunnels that contain the key level step and no marked
level steps.

Consider the key level step. Then it switches sign every time α(h)
n,` is applied, and so

it switches signs twice. Thus the key level step has the same sign in both E, and
α

(h)
n,`(α

(h)
n,`(S(M,N))).

Consider level steps that are not the key level step. Since α(h)
n,` only changes the sign

of the key level steps and tunnels, these are unaffected by α(h)
n,` . Thus they have the

same sign in S(M,N) and α(h)
n,`(α

(h)
n,`(S(M,N))).

Consider steps in tunnels that don’t contain the key level step or contain a marked
level step. Recall that α(h)

n,` can only change the sign of steps in a tunnel if the
tunnel contains key step and contain no marked level steps. Since these tunnels
don’t they are unaffected by α

(h)
n,` . Thus they have the same sign in S(M,N) and

α
(h)
n,`(α

(h)
n,`(S(M,N))).

Consider steps in tunnels that do contain the key level step and no marked level steps.
Observe that any tunnel which contains the key level step can’t have positive steps
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since the key level step is a negative step and a negative step contained in a tunnel
with positive steps would mean that M is not based marked.

Thus both steps in a given tunnel are negative steps. Suppose that a given tunnel
contains a negative step that is not the key level step. Then the tunnel contains at
least two negative steps and so is unaffected by applying α(h)

n,` . Applying α(h)
n,` again

will leave the tunnel unaffected again since the key level step and the tunnel will be
of opposite sign.

If the given tunnel contains no other negative steps other than the key level step,
applying α(h)

n,` will change the sign of the steps in the tunnel. But then the tunnel
will contain positive steps and contain the key level step which is also a positive
step. Thus applying α(h)

n,` again will change the sign of the steps in the tunnel back to
negative.

Thus every step in S(M,N) will remain the same when α(h)
n,` is applied twice. Thus

α
(h)
n,`(α

(h)
n,`(S(M,N))) = S(M,N).

Thus α(h)
n,` is an involution of S

(
Ψ(h)
n,`

)
.

Theorem 4.5. Let α∗n,` be the function on Ψ(h)
n,` such that α∗n,`((M1,M2)) = (N1, N2)

from Lemma 4.3. Then α∗n,` is an involution of Ψ(h)
n,` such that for any (M1,M2) ∈ Ψ(h)

n,`

either α∗n,`(M1,M2) = (M1,M2) or v(α∗n,`(M1,M2)) = −v(M1,M2).

Proof. Suppose (M1,M2) ∈ P(0)
n,k×P

(h)
k,` for some k. Consider S(M1,M2) and αn,`(S(M1,M2)).

Now α∗n,`(M1,M2) = (N1, N2) where

S(N1, N2) = αn,`(S(M1,M2)).

Now, by definition α∗n,`(N1, N2) = (L1, L2) where

S(L1, L2) = αn,`(S(N1, N2)) = αn,`(αn,`(S(M1,M2)))

By Lemma 4.4 we have that

S(L1, L2) = αn,`(αn,`(S(M1,M2))) = S(M1,M2).

By Lemma 4.3 the decomposition is unique and so

(L1, L2) = (M1,M2).
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Thus
α∗n,`(α∗n,`(M1,M2)) = α∗n,`(N1, N2) = (L1, L2) = (M1,M2).

Thus α∗n,` is an involution of Ψ(h)
n,` .

Now let M1 ∈ P(0)
n,k, M2 ∈ P(h)

k,` be such that (M1,M2) 6= α∗n,`(M1,M2).

By definition of αn,` we know that if S(M1,M2) has exactly k negative steps then
αn,`(S(M1,M2)) has k±b negative steps where b is odd (since an odd number of steps
had their sign switched). Thus N1 ∈ P(0)

n,k±b, and N2 ∈ P(h)
k±b,` and

v(α∗n,`(M1,M2)) = v(N1, N2) = (−1)k±b+` = (−1)k+`(−1)±b = −v(M1,M2).

That is, if (M1,M2) 6= α∗n,`(M1,M2), then

v(α∗n,`(M1,M2)) = −v(M1,M2).

Lemma 4.6. Let F be the set of fixed points of α∗n,` : Ψ(h)
n,` → Ψ(h)

n,`. That is,

F = {(M,N) ∈ Ψ(h)
n,` | α∗n,`(M,N) = (M,N)}

. Then ∑
(M,N)∈Ψ(h)

n,`

v(M,N) =
∑

(M,N)∈F
v(M,N)

Proof. From Theroem 4.5 we know that α∗n,` is an v-reversing involution on Ψ(h)
n,` and

thus a bijection on Ψ(h)
n,` . Thus

2
∑

(M,N)∈Ψ(h)
n,`

v(M,N) =
∑

(M,N)∈Ψ(h)
n,`

v(M,N) + v(α∗n,`(M,N)).

Let F ⊆ Ψ(h)
n,` be the set of fixed points of α∗n,`. Then∑

(M,N)∈Ψ(h)
n,`

v(M,N) + v(α∗n,`(M,N)) =
∑

(M,N)∈F
v(M,N) + v(α∗n,`(M,N))

+
∑

(M,N)∈Ψ(h)
n,`
\F

v(M,N) + v(α∗n,`(M,N))

= 2
∑

(M,N)∈F
v(M,N),
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since by Theorem 4.5, v(M,N) + v(α∗n,`(M,N)) = 0, for any element (M,N) ∈
Ψ(h)
n,` \ F . Hence, ∑

(M,N)∈Ψ(h)
n,`

v(M,N) =
∑

(M,N)∈F
v(M,N)

Theorem 4.7. Let n, ` be any non-negative integers and p(h)
n,k be the number of peakless

Motzkin paths of length n having exactly k marked level steps, where only level steps
at height h are allowed to be marked. Then the ordinary generating function over n
for

∞∑
k=0

(−1)k+`p
(0)
n,k p

(h)
k,l

is 
1 if ` = 0

x2h+`
(

h∑
i=0

x2i
)`−1

otherwise

Proof. First, observe that since p(h)
n,k = 0 if k > n and p(h)

k,` = 0 if ` > k, we know that
p

(0)
n,k p

(h)
k,` = 0 unless ` ≤ k ≤ n. Hence,

∞∑
k=0

(−1)k+`p
(0)
n,k p

(h)
k,` =

n∑
k=`

(−1)k+`p
(0)
n,k p

(h)
k,l =

n∑
k=`

∑
(M,N)∈P(0)

n,k
×P(h)

k,`

v(M,N) (7)

=
∑

(M,N)∈Ψ(h)
n,`

v(M,N) (8)

By Theorem 3.15 we have that αn,` is a v-reversing involution and from Lemma 3.16,
we know that ∑

(M,N)∈Ψ(h)
n,`

v(M,N) =
∑

(M,N)∈F
v(M,N)

where
F = {(M,N) ∈ Ψ(h)

n,` | α∗n,`(M,N) = (M,N)}.

By definition of α∗n,` we know that in order for (M,N) to be in F , neither M nor N
can have unmarked level steps.
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Suppose that (M,N) ∈ F and ` = 0. Then N has no marked level steps. Then N
can have no up or down steps since then it would either have a peak or a sideways
step. Thus N must be the empty path. Thus M has no marked level steps and so it
is the empty path as well. Thus the only fixed point with no marked steps in N is
the pair of empty Motzkin Paths. Hence, if ` = 0, the ordinary generating function
for ∑(M,N)∈F v(M,N) over n is 1.

Now suppose ` ≥ 1. Since M is based marked and cannot have any level steps it
must be a path consisting of n = k marked level steps. We also have that N has at
least one marked level step. Since marked steps must occur at height h in N the first
h steps of N must be up steps (otherwise there would be an unmarked level step or
a peak) and similarly the last h steps of N must be down steps. Thus N must be of
the form

N = U · · ·U︸ ︷︷ ︸
h steps

L̄Pj1L̄Pj2 · · · L̄Pj`−1L̄D · · ·D︸ ︷︷ ︸
h steps

where there are ` marked level steps L̄ and each Pji is some sequence of steps that
do not contain any marked level steps. Thus Pji must only contain up and down
steps. If Pji has up steps, they cannot appear first since that would imply a peak or
unmarked level step. Thus each Pji must be of the form

Pji = D · · ·D︸ ︷︷ ︸
ji steps

U · · ·U︸ ︷︷ ︸
ji steps

where 0 ≤ ji ≤ h for each i = 1, . . . , `− 1.

SinceM is a sequence of marked steps, its length must be equal to N ’s length. Hence,
for ` ≥ 1, (M,N) ∈ F if and only if

(M,N) = (L̄ · · · L̄︸ ︷︷ ︸
n steps

, U · · ·U︸ ︷︷ ︸
h steps

L̄Pj1L̄Pj2 · · · L̄Pj`−1L̄D · · ·D︸ ︷︷ ︸
h steps

)

where 0 ≤ ji ≤ h, Pji = D · · ·D︸ ︷︷ ︸
ji steps

U · · ·U︸ ︷︷ ︸
ji steps

, for i = 1, . . . , `− 1, and

n = 2h+ `+ 2
`−1∑
i=1

ji.

In this case, then v(M,N) = (−1)n+` = 1 and
∞∑
k=0

(−1)k+`p
(0)
n,k p

(h)
k,` =

∑
(M,N)∈F

v(M,N) = |F |
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whose ordinary generating function over n is

x2h+`
(

h∑
i=0

x2i
)`−1

.
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