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1. Introduction

In this paper we study bounds on a recently introduced domination invariant applied to Cartesian products of graphs.
At its core, our work is motivated by the longstanding conjecture of V.G. Vizing [17] on the domination of product graphs,
which states that for any graphs G and H, y(GOH) > y(G)y(H). Here, y(G) is the domination number of G, which is the
minimum size of a set D of vertices so that every vertex not in D is adjacent to some vertex in D, and O is the Cartesian
product of graphs. The breakthrough “double-projection” result of Clark and Suen [5] gave the first Vizing-type bound of
y(GOH) > %y(G)y(H). Recently, BreSar [1] improved this bound to y(GOH) > w, where p(G) is the two-
packing number of G. For more on attempts to solve Vizing’s conjecture over more than five decades since it was stated, see
the survey [2].

Over the years, due to the unyielding nature of the conjecture, devotees have used offshoots of the domination number
to attempt Vizing-type inequalities, in hopes of better understanding the difficulties of the original problem. For example,
BreSar, Henning, and Rall [4] defined the paired and rainbow domination numbers, and Henning and Rall [ 12] conjectured a
Vizing-type inequality for total domination. This last conjecture was proved by Ho [7,14], who showed that for any graphs
Gand H, y,(GOH) > %y[(G)yt(H). In this result, y;(G) is the total domination number of G, which is the minimum size
of a set T of vertices so that every vertex of G is adjacent to some vertex in T. A sharp example was given in [12] and the
characterization of pairs of graphs attaining equality is an active problem: see [3] and [15].

Since the difference between a totally dominating set and a dominating set is that every vertex in a totally dominating
set must be adjacent to some other vertex in that set, while this rule does not have to hold in a dominating set, we find it
instructive to consider Vizing-type inequalities for domination invariants that share properties with both domination and
total domination. That is, we want to consider some domination function in between domination and total domination. Such
a function, first investigated by Goddard, Henning, and McPillan [6], is the semi-total domination number of G, y;2(G), which
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is the minimum size of a set of vertices S in G, so that every vertex of S is of distance at most 2 to some other vertex of S,
and every vertex not in S is adjacent to a vertex in S. Although introduced only a few years ago, this function has seen much
recent attention, see [8-11,16,18].

Although we cannot prove it, we believe that y;,(GOH) > %ytz(G)ytz(H) for any graphs G and H. Our result depends on
the method of Clark and Suen [5] and requires more careful analysis of semi-total dominating sets. We show that for any
graphs G and H, y:2(GOH) > 1y(G)yea(H).

Definitions and Notation. For notations and graph terminologies, we will typically follow [13]. Throughout this paper,
all graphs will be considered undirected, simple, connected, and finite. Specifically, let G be a graph with vertex set
V = V(G) and edge set E = E(G). Two vertices v, w € V are neighbors, or adjacent, if vw € E. The open neighborhood
of v € V, is the set of neighbors of v, denoted by Ng(v), whereas the closed neighborhood is Ng[v] = Ng(v) U {v}. The open
neighborhood of S C V is the set of all neighbors of vertices in S, denoted by N¢(S), whereas the closed neighborhood of S
is Ng[S] = Ng(S) U S. When G is clear from context, we may write N(S) and N[S] instead of Ng(S) and Ng[S], respectively.
The distance between two vertices v, w € V is the length of a shortest (v, w)-path in G, and is denoted by dg(v, w). The
Cartesian product of two graphs G(V1, E1) and H(V>, E,), denoted by GO H, is a graph with vertex set V; x V5 and edge set
E(GDH) = {((ul, vl), (UZ, Uz)) V1 =10 and (ul, uz) €Ej, oruy =uy and (U], U2) (S Ez}

A subset of vertices S C V(G) is called a semi-total dominating set if N[S] = V(G) and for any vertex u € S, there exists
avertex v € S so that d(u, v) < 2. We say that a vertex set S semi-totally dominates a vertex set T if S is a semi-total
dominating set in the induced subgraph S U T of G. The semi-total domination number of G, written y;,(G), is the size of a
minimum semi-total dominating set of G. A 2-packing is a subset of vertices T of G so that every pair of vertices in T is of
distance at least 3. The size of a maximum 2-packing of G is called the 2-packing number, which is written p(G).

We will also make use of the standard notation [k] = {1, ..., k}, and for two vertices u, v, we write u ~ v to indicate
that u is adjacent to v.

2. Main results

In this section we provide our main results. We begin by establishing a Vizing’s-type result which makes use of the
2-packing number.

Theorem 1. For any isolate-free graphs G and H,
Ye2(GOH) = p(G)yra(H).

Proof. Without loss of generality, we assume that p(G) = y(G) and let {vy, ..., v )} be a maximum 2-packing of G. Since
each vertex from our packing is at distance at least 3 from any other vertex of our packing, we observe thatfori =1, ..., p(G),
the closed neighborhoods N¢[v;] are pairwise disjoint. Let {V1, ..., V,()} be a partition of V(G) such that Ng[v;] € V;, for
1 <i=< p(G).LetDbeay,(GOH)-set.Fori = 1,..., p(G),let D; = DN (V; x V(H)), and let H; = {v;} x V(H). Further,
let S; be a minimum set of vertices in G O H that semi-totally dominates H; and contains as many vertices in H; as possible.
Then, S; € V; x V(H). Next suppose that S; contains a vertex x such that x is not in H;. Then, x is the unique vertex which
semi-totally dominates x/, for some x’ € H;. Since x’ has neighbors € H;, all of which are dominated by vertices in S;, if we
replace x by X’ in S;, then we see that S; is still a semi-total dominating set (since x’ is at distance at least 2 from a vertex
which dominates one of its neighbors). Thus, we have found a set of vertices from G OH that semi-totally dominates H; and
contains more vertices in H; than does S;, a contradiction. Hence, we have S; C H;, and so S; is a semi-total dominating set of
the copy of H in G O H induced by the set H;. Since D; semi-totally dominates {v;} x V(H), |D;| > |S;|. Thus,

p(G) p(G)
Y (GOH) = Y ISil = Y ya(H) = p(G)ye(H). O
i=1 i=1
Next, we prove a Vizing’s type result which relies only on the semi-total domination number. We do this by partitioning
minimum semi-total dominating sets into parts that are and are not totally dominating. Notice that for any graph G, if
U = {uq, ..., u} is a minimum semi-total dominating set of G, then U can be separated into two sets, X and Y, where
X is the set of vertices of U which are adjacent to at least one other vertex of U, and Y = U \ X. We call such sets X, allied
and such sets Y, free.
For any graph G, consider the set of minimum semi-total dominating sets of vertices, {Uq, ..., Uy}, and for 1 <i < klet
X; and Y; be partitions of U; into allied and free sets, respectively. We call U; so that |X;| is of maximum size for 1 < i < k
a maximum allied semi-total dominating set of G, the partition {X;, Y;} a maximum allied partition of G, the set X; a maximum
allied set of G, and the set Y; a minimum free set of G.
For any maximum allied partition of G, {X, Y}, let x(G) = |X| and ¥(G) = |Y/|.

Theorem 2. For any isolate-free graphs G and H,

1
Ye2(GOH) > §Vt2(G)Vt2(H)
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Proof. Let D be a minimum semi-total dominating set of GOH. Let k = y4»(G) and U = {uy, ..., Uy} be a maximum allied
semi-total dominating set of G with maximum allied partition {X, Y}. Suppose X = {uq, ..., us}and Y = {up41, ..., Upim}-
Form a partition {1, ..., m} of V(G) where m; € N(u;) and x € mr; implies x is adjacent tou; for 1 < i < €, 1; € NJ[u;]

and x € m; implies x is adjacent to or equal to u; for £ + 1 < j < £ + m = k. Furthermore, we define this partition to have
the property that if u; € X and u; € Y so that d(u;, y;) = 2, then N(u;) N N(u;) N 7 = @. That is, for any vertex u; of Y which
is of distance 2 to some vertex of X, there exists a vertex u which is adjacent to u; and to a vertex of X, and u belongs to ;
for some i € [£]. To explain, if a vertex u is both a neighbor of an element in X and an element in Y, then when selecting
our partition, we place u in the part containing the element of X, not Y. This choice is made to minimize the sizes of 7; for
+1<j<k

Let D; = (r; x V(H))ND.Let P; = {v : (u, v) € D; for some u € 7;}, which are the projections of D; onto H. We call vertices
of V(H) missing, if they are not dominated from P; and write M; = V(H)— Ny [P;]. Vertices of P; which are of distance at most 2
to some other vertex of P; or M; we call covered and write Q; = {v € P; : 3w € P;UM; such that 0 < d(v, w) < 2}. Vertices of
P; of distance at least 3 to other vertices of P; or M; we call uncovered and writeR; = {v € P; : Yw € (P;,UM;)\{v}, d(v, w) > 3}.

For v € V(H), let

D’ =DN(V(G) x {v})) ={(u,v) e D:u e V(G)}
and C be a subset of {1, ..., k} x V(H) given by
C={(i,v): m x {v} € Ngon(D")orv € R;}.
Let N = |C|. We will bound N from above by considering the following.
Li={(i,v)eC:veV(H)},

R’ ={li,v)eC:1<i<k}

These definitions are well-known as they appeared in the seminal work [5], nonetheless, we would like to remind the
reader of their interpretation. The set C is a double indexing set, which indicates where you have cells that are either
horizontally dominated or dominated by vertices of R;. A cell is just a copy of n; for some i, at some height v € V(H).
We represent G along the horizontal axis of the Cartesian product and H along the vertical. Thus, horizontally dominated
cells are precisely, 7r; x {v} which is contained in Ng-y(D"). Now, L; are elements of C with a fixed i and R” are elements of C
along a fixed v.

Since counting vertices vertically and horizontally produces the same amount, we have

k
N=) lal= ) IR
i=1

veV(H)

Notice that if v € M;, then the vertices in r; x {v} which are not in D’ must be adjacent to the vertices in D’ since D is
a semi-total dominating set of GO H. Furthermore, the vertices of R; are counted in £;. This means that |£;| > |M;| + |R;i|.
Hence we obtain the following lower bound for N,

k
N = (IMil + IRi]) (1)
i=1

To find an upper bound on the above quantity, we bound the size of R".
Claim 1. Forany v € V(H), |R"| < 2|D"|.

Proof. Suppose |R"| > 2|D?| for some v € V(H). For (i, v) € RY, by definition, r; x {v} € Nggn(D")orv € R;.

In what follows, we construct a semi-total dominating set T of G.

In the first case, if 7; X {v} € Ngop(DV), we note that if some vertex x € 7;, then x is adjacent to vertices in B’ where B’
is the projection of D" onto G.

Subcase 1. Suppose u € B’. If u € m; such that (i,v) ¢ R',u # y;and 1 < i < ¢ 4+ m,thenu € N(y). Ifu € m;
such that (i, v) € RY, then there exists ©' € B’ such that u € N(u'). If u € m; such that (i, v) ¢ RY, u = u; for some
£+ 1 <i<{+ m,then notice that we can find a vertex x; which is a neighbor of u; in ;. Note that x; need not be a member
of BY, but simply a neighbor of u;. Select one such vertex x; for every such u, and let A be the set of these vertices x;. Thus,
BPCT,A={u; : (i,v)¢ R, u; ¢ B, 1<i<f+m}CT,and{x; : (i,v) ¢ R",x; ~uforsomeu € UNB’} CT.

Subcase 2. Suppose u € {u; : (i,v) ¢ RY,1 <i < £}.Ifu € 7; such that (j, v) ¢ RY, thenu € N(u;). If u € 7; such that
(i, v) € RY, then there exists u’ € B” such that u € N(u'). Thus, in this subcase, u is adjacent either to a vertex of B” or a
vertex u;. There are no new vertices that need to be added to T.

Subcase 3. Suppose u € {u; : (i,v) ¢ R”, £+ 1 < i < £+ m}. Suppose u is of distance 2 to some vertex u; € X. By the
definition of the partition, there exists some vertex w adjacent to u and uj, so that w € 7y for somej € [£]. If (j/, v) € R?,
then there exists 1’ € BY so that ' ~ w ~ u, which means that u is of distance at least 2 to some vertex of B". Since T
contains BY, these vertices are already distance 2 from another vertex in T.
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We are left to consider the case when u is of distance at least 3 to any vertex of X. Since U is a minimum semi-total
dominating set of G, there exists some vertex u; € Y, so that d(u, u;) = 2.If (j, v) ¢ R", these vertices are already in T so no
action needs to be taken.

If (j, v) € R, then there exists some vertex v’ € B” so that u’ ~ u;. We will select y; and place it in T to make T a
semi-total dominating set of G. Notice that in this case, the number of such vertices u; is at most equal to |[D”|. Let S be the
set of such vertices u;, which are of distance 2 to a vertex u € Y and at least of distance 3 to any vertex of X. Then S will be a
subset of the set T. This finishes Subcase 3.

In the second case, if v € R;, then since D is a semi-total dominating set, there is some vertex (u, v) € (7; X {v})N D" and
(w, v) € (mj x {v}) N DY, for somej € [k], so that (u, v) is at most distance 2 from (w, v).

Putting these cases together, we have the following disjoint union of sets:

T=B'U{y:(i,v)¢gR",1<i<e}U{uy:(,v)¢R" u¢B  L+1<i<{+m}
UAUS (2)
To show T is a semi-total dominating set of G, it is enough to show that T is a dominating set, since we showed in each
subcase of the first case, and in the second case, that every vertex of T is of distance at most 2 to some other vertex of T. If a
vertex u is contained in 7; for (i, v) € RY, then u is dominated by some vertex of B". If (i, v) ¢ R", then u is dominated either
by {u; : (i,v) ¢ RV, 1 <i<{},or{uy;:(i,v) ¢ R",u; ¢ B", £+ 1<i<{+ m},orA.
Furthermore,

IT] = IB°| + (y2(G) — IR"| 4+ IS]) = 2ID"| + (¥22(G) — IR"]) < ¥e2(G)

which is a contradiction. O

Thus, by Claim 1,

N= ) IRI< ) 2p'|=2D] (3)

veV(H) veV(H)

We now show a semi-total dominating set of H in terms of M;.

Claim 2. Foranyi € [k], there exists a set X; of at most |R;| — 1 vertices of V(H) so that M; U P; U X; is a semi-total dominating
set of H.

Proof. We first observe that P; U M; is a dominating set of H with the additional property that the vertices of M; dominate
only themselves, not their neighbors. Thus, every vertex x € R; must be either of distance 3 to some vertex y € R; or every
vertex of distance 2 from x is a vertex of M;. This holds since otherwise some vertex of distance 2 from x is not dominated by
P; U M;. Furthermore, if x € R; which is of distance 3 to some vertex y € R;, then we may select one vertex z on a path from
x to y such that z is of distance at most 2 to both x and y.

We now construct a semi-total dominating set of H, T;, by including the vertices of M;, the vertices of P; and vertices X;
which are of distance at most 2 to two vertices of R; which are themselves of distance three to each other. The minimum
number of such vertices is at most |R;| — 1, which can be easily verified by induction on |R;|, and the result follows. O

By Claim 2, for each i, we can construct a semi-total dominating set of H, T; = M; U R; U Q; U X;. This gives |[M;| 4 |R;| >
ve2(H) — |Xi| — |Q;|. However, note that X; N Q; = ¥ and |Xi| + |Q;| < |P;|. This implies that |M;| + |Ri| > yt2(H) — |Pi|. Thus,
we have

k

k
> (1M1 + IRT) = (vt = IRT) = vea(GvealH) — DI (4

i=1 i=1

Combining Egs. (1), (3), and (4) we obtain
1
|D| > thZ(G)VtZ(H) g
3. Conclusion
In this paper we have proven two Vizing-type results on the semi-total domination number. Our main result, in
Theorem 2, shows that for isolate-free graphs G and H, we have the inequality y;2(GOH) > %yrz(G)ytz(H). However, we
do not believe this bound is sharp, and conjecture a stronger result.

Conjecture 1. For any isolate-free graphs G and H,

1
v(GOH) > 5Vt2(G)Vt2(H)-
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