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a b s t r a c t

A set of vertices S in a simple isolate-free graph G is a semi-total dominating set of G if it
is a dominating set of G and every vertex of S is within distance 2 of another vertex of S.
The semi-total domination number of G, denoted by γt2(G), is the minimum cardinality
of a semi-total dominating set of G. In this paper, we study semi-total domination of
Cartesian products of graphs. Our main result establishes that for any graphs G and H ,
γt2(G□H) ≥

1
3γt2(G)γt2(H).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study bounds on a recently introduced domination invariant applied to Cartesian products of graphs.
At its core, our work is motivated by the longstanding conjecture of V.G. Vizing [17] on the domination of product graphs,
which states that for any graphs G and H , γ (G□H) ≥ γ (G)γ (H). Here, γ (G) is the domination number of G, which is the
minimum size of a set D of vertices so that every vertex not in D is adjacent to some vertex in D, and □ is the Cartesian
product of graphs. The breakthrough ‘‘double-projection" result of Clark and Suen [5] gave the first Vizing-type bound of
γ (G□H) ≥

1
2γ (G)γ (H). Recently, Brešar [1] improved this bound to γ (G□H) ≥

(2γ (G)−ρ(G))γ (H)
3 , where ρ(G) is the two-

packing number of G. For more on attempts to solve Vizing’s conjecture over more than five decades since it was stated, see
the survey [2].

Over the years, due to the unyielding nature of the conjecture, devotees have used offshoots of the domination number
to attempt Vizing-type inequalities, in hopes of better understanding the difficulties of the original problem. For example,
Brešar, Henning, and Rall [4] defined the paired and rainbow domination numbers, and Henning and Rall [12] conjectured a
Vizing-type inequality for total domination. This last conjecture was proved by Ho [7,14], who showed that for any graphs
G and H , γt (G□H) ≥

1
2γt (G)γt (H). In this result, γt (G) is the total domination number of G, which is the minimum size

of a set T of vertices so that every vertex of G is adjacent to some vertex in T . A sharp example was given in [12] and the
characterization of pairs of graphs attaining equality is an active problem: see [3] and [15].

Since the difference between a totally dominating set and a dominating set is that every vertex in a totally dominating
set must be adjacent to some other vertex in that set, while this rule does not have to hold in a dominating set, we find it
instructive to consider Vizing-type inequalities for domination invariants that share properties with both domination and
total domination. That is, wewant to consider some domination function in between domination and total domination. Such
a function, first investigated by Goddard, Henning, and McPillan [6], is the semi-total domination number of G, γt2(G), which
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is the minimum size of a set of vertices S in G, so that every vertex of S is of distance at most 2 to some other vertex of S,
and every vertex not in S is adjacent to a vertex in S. Although introduced only a few years ago, this function has seen much
recent attention, see [8–11,16,18].

Although we cannot prove it, we believe that γt2(G□H) ≥
1
2γt2(G)γt2(H) for any graphs G and H . Our result depends on

the method of Clark and Suen [5] and requires more careful analysis of semi-total dominating sets. We show that for any
graphs G and H , γt2(G□H) ≥

1
3γt2(G)γt2(H).

Definitions and Notation. For notations and graph terminologies, we will typically follow [13]. Throughout this paper,
all graphs will be considered undirected, simple, connected, and finite. Specifically, let G be a graph with vertex set
V = V (G) and edge set E = E(G). Two vertices v, w ∈ V are neighbors, or adjacent, if vw ∈ E. The open neighborhood
of v ∈ V , is the set of neighbors of v, denoted by NG(v), whereas the closed neighborhood is NG[v] = NG(v) ∪ {v}. The open
neighborhood of S ⊆ V is the set of all neighbors of vertices in S, denoted by NG(S), whereas the closed neighborhood of S
is NG[S] = NG(S) ∪ S. When G is clear from context, we may write N(S) and N[S] instead of NG(S) and NG[S], respectively.
The distance between two vertices v, w ∈ V is the length of a shortest (v, w)-path in G, and is denoted by dG(v, w). The
Cartesian product of two graphs G(V1, E1) and H(V2, E2), denoted by G□H , is a graph with vertex set V1 × V2 and edge set
E(G□H) = {((u1, v1), (u2, v2)) : v1 = v2 and (u1, u2) ∈ E1, or u1 = u2 and (v1, v2) ∈ E2}.

A subset of vertices S ⊆ V (G) is called a semi-total dominating set if N[S] = V (G) and for any vertex u ∈ S, there exists
a vertex v ∈ S so that d(u, v) ≤ 2. We say that a vertex set S semi-totally dominates a vertex set T if S is a semi-total
dominating set in the induced subgraph S ∪ T of G. The semi-total domination number of G, written γt2(G), is the size of a
minimum semi-total dominating set of G. A 2-packing is a subset of vertices T of G so that every pair of vertices in T is of
distance at least 3. The size of a maximum 2-packing of G is called the 2-packing number, which is written ρ(G).

We will also make use of the standard notation [k] = {1, . . . , k}, and for two vertices u, v, we write u ∼ v to indicate
that u is adjacent to v.

2. Main results

In this section we provide our main results. We begin by establishing a Vizing’s-type result which makes use of the
2-packing number.

Theorem 1. For any isolate-free graphs G and H,

γt2(G □ H) ≥ ρ(G)γt2(H).

Proof. Without loss of generality, we assume that ρ(G) = γ (G) and let {v1, . . . , vρ(G)} be a maximum 2-packing of G. Since
each vertex fromour packing is at distance at least 3 fromanyother vertex of our packing,weobserve that for i = 1, . . . , ρ(G),
the closed neighborhoods NG[vi] are pairwise disjoint. Let {V1, . . . , Vρ(G)} be a partition of V (G) such that NG[vi] ⊆ Vi, for
1 ≤ i ≤ ρ(G). Let D be a γt2(G □ H)-set. For i = 1, . . . , ρ(G), let Di = D ∩ (Vi × V (H)), and let Hi = {vi} × V (H). Further,
let Si be a minimum set of vertices in G □ H that semi-totally dominates Hi and contains as many vertices in Hi as possible.
Then, Si ⊆ Vi × V (H). Next suppose that Si contains a vertex x such that x is not in Hi. Then, x is the unique vertex which
semi-totally dominates x′, for some x′

∈ Hi. Since x′ has neighbors ∈ Hi, all of which are dominated by vertices in Si, if we
replace x by x′ in Si, then we see that Si is still a semi-total dominating set (since x′ is at distance at least 2 from a vertex
which dominates one of its neighbors). Thus, we have found a set of vertices from G □H that semi-totally dominates Hi and
contains more vertices in Hi than does Si, a contradiction. Hence, we have Si ⊆ Hi, and so Si is a semi-total dominating set of
the copy of H in G □ H induced by the set Hi. Since Di semi-totally dominates {vi} × V (H), |Di| ≥ |Si|. Thus,

γt2(G □ H) ≥

ρ(G)∑
i=1

|Si| ≥

ρ(G)∑
i=1

γt2(H) = ρ(G)γt2(H). □

Next, we prove a Vizing’s type result which relies only on the semi-total domination number. We do this by partitioning
minimum semi-total dominating sets into parts that are and are not totally dominating. Notice that for any graph G, if
U = {u1, . . . , uk} is a minimum semi-total dominating set of G, then U can be separated into two sets, X and Y , where
X is the set of vertices of U which are adjacent to at least one other vertex of U , and Y = U \ X . We call such sets X , allied
and such sets Y , free.

For any graph G, consider the set of minimum semi-total dominating sets of vertices, {U1, . . . ,Uk}, and for 1 ≤ i ≤ k let
Xi and Yi be partitions of Ui into allied and free sets, respectively. We call Ui so that |Xi| is of maximum size for 1 ≤ i ≤ k
a maximum allied semi-total dominating set of G, the partition {Xi, Yi} a maximum allied partition of G, the set Xi a maximum
allied set of G, and the set Yi a minimum free set of G.

For any maximum allied partition of G, {X, Y }, let x(G) = |X | and y(G) = |Y |.

Theorem 2. For any isolate-free graphs G and H,

γt2(G□H) ≥
1
3
γt2(G)γt2(H)
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Proof. Let D be a minimum semi-total dominating set of G□H . Let k = γt2(G) and U = {u1, . . . , uk} be a maximum allied
semi-total dominating set of Gwith maximum allied partition {X, Y }. Suppose X = {u1, . . . , uℓ} and Y = {uℓ+1, . . . , uℓ+m}.

Form a partition {π1, . . . , πk} of V (G) where πi ⊆ N(ui) and x ∈ πi implies x is adjacent to ui for 1 ≤ i ≤ ℓ, πj ⊆ N[uj]

and x ∈ πj implies x is adjacent to or equal to uj for ℓ + 1 ≤ j ≤ ℓ + m = k. Furthermore, we define this partition to have
the property that if ui ∈ X and uj ∈ Y so that d(ui, uj) = 2, then N(ui) ∩ N(uj) ∩ πj = ∅. That is, for any vertex uj of Y which
is of distance 2 to some vertex of X , there exists a vertex u which is adjacent to uj and to a vertex of X , and u belongs to πi
for some i ∈ [ℓ]. To explain, if a vertex u is both a neighbor of an element in X and an element in Y , then when selecting
our partition, we place u in the part containing the element of X , not Y . This choice is made to minimize the sizes of πj for
ℓ + 1 ≤ j ≤ k.

LetDi = (πi×V (H))∩D. Let Pi = {v : (u, v) ∈ Di for some u ∈ πi}, which are the projections ofDi ontoH . We call vertices
of V (H)missing, if they are not dominated from Pi andwriteMi = V (H)−NH [Pi]. Vertices of Pi which are of distance atmost 2
to some other vertex of Pi orMi we call covered and write Qi = {v ∈ Pi : ∃w ∈ Pi ∪Mi such that 0 < d(v, w) ≤ 2}. Vertices of
Pi of distance at least 3 to other vertices of Pi orMi we call uncovered andwrite Ri = {v ∈ Pi : ∀w ∈ (Pi∪Mi)\{v}, d(v, w) ≥ 3}.

For v ∈ V (H), let

Dv
= D ∩ (V (G) × {v}) = {(u, v) ∈ D : u ∈ V (G)}

and C be a subset of {1, . . . , k} × V (H) given by

C = {(i, v) : πi × {v} ⊆ NG□H (Dv) or v ∈ Ri}.

Let N = |C |. We will bound N from above by considering the following.

Li = {(i, v) ∈ C : v ∈ V (H)},

Rv
= {(i, v) ∈ C : 1 ≤ i ≤ k}.

These definitions are well-known as they appeared in the seminal work [5], nonetheless, we would like to remind the
reader of their interpretation. The set C is a double indexing set, which indicates where you have cells that are either
horizontally dominated or dominated by vertices of Ri. A cell is just a copy of πi for some i, at some height v ∈ V (H).
We represent G along the horizontal axis of the Cartesian product and H along the vertical. Thus, horizontally dominated
cells are precisely, πi × {v} which is contained in NG□H (Dv). Now, Li are elements of C with a fixed i and Rv are elements of C
along a fixed v.

Since counting vertices vertically and horizontally produces the same amount, we have

N =

k∑
i=1

|Li| =

∑
v∈V (H)

|Rv
|.

Notice that if v ∈ Mi, then the vertices in πi × {v} which are not in Dv must be adjacent to the vertices in Dv since D is
a semi-total dominating set of G□H . Furthermore, the vertices of Ri are counted in Li. This means that |Li| ≥ |Mi| + |Ri|.
Hence we obtain the following lower bound for N ,

N ≥

k∑
i=1

(|Mi| + |Ri|) (1)

To find an upper bound on the above quantity, we bound the size of Rv .

Claim 1. For any v ∈ V (H), |Rv
| ≤ 2|Dv

|.

Proof. Suppose |Rv
| > 2|Dv

| for some v ∈ V (H). For (i, v) ∈ Rv , by definition, πi × {v} ⊆ NG□H (Dv) or v ∈ Ri.
In what follows, we construct a semi-total dominating set T of G.
In the first case, if πi × {v} ⊆ NG□H (Dv), we note that if some vertex x ∈ πi, then x is adjacent to vertices in Bv where Bv

is the projection of Dv onto G.
Subcase 1. Suppose u ∈ Bv . If u ∈ πi such that (i, v) /∈ Rv , u ̸= ui and 1 ≤ i ≤ ℓ + m, then u ∈ N(ui). If u ∈ πi

such that (i, v) ∈ Rv , then there exists u′
∈ Bv such that u ∈ N(u′). If u ∈ πi such that (i, v) /∈ Rv , u = ui for some

ℓ + 1 ≤ i ≤ ℓ +m, then notice that we can find a vertex xi which is a neighbor of ui in πi. Note that xi need not be a member
of Bv , but simply a neighbor of ui. Select one such vertex xi for every such u, and let A be the set of these vertices xi. Thus,
Bv

⊆ T , A = {ui : (i, v) /∈ Rv, ui /∈ Bv, 1 ≤ i ≤ ℓ + m} ⊆ T , and {xi : (i, v) /∈ Rv, xi ∼ u for some u ∈ U ∩ Bv
} ⊆ T .

Subcase 2. Suppose u ∈ {ui : (i, v) /∈ Rv, 1 ≤ i ≤ ℓ}. If u ∈ πj such that (j, v) /∈ Rv , then u ∈ N(uj). If u ∈ πj such that
(j, v) ∈ Rv , then there exists u′

∈ Bv such that u ∈ N(u′). Thus, in this subcase, u is adjacent either to a vertex of Bv or a
vertex uj. There are no new vertices that need to be added to T .

Subcase 3. Suppose u ∈ {ui : (i, v) /∈ Rv, ℓ + 1 ≤ i ≤ ℓ + m}. Suppose u is of distance 2 to some vertex uj ∈ X . By the
definition of the partition, there exists some vertex w adjacent to u and uj, so that w ∈ πj′ for some j′ ∈ [ℓ]. If (j′, v) ∈ Rv ,
then there exists u′

∈ Bv so that u′
∼ w ∼ u, which means that u is of distance at least 2 to some vertex of Bv . Since T

contains Bv , these vertices are already distance 2 from another vertex in T .
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We are left to consider the case when u is of distance at least 3 to any vertex of X . Since U is a minimum semi-total
dominating set of G, there exists some vertex uj ∈ Y , so that d(u, uj) = 2. If (j, v) /∈ Rv , these vertices are already in T so no
action needs to be taken.

If (j, v) ∈ Rv , then there exists some vertex u′
∈ Bv so that u′

∼ uj. We will select uj and place it in T to make T a
semi-total dominating set of G. Notice that in this case, the number of such vertices uj is at most equal to |Dv

|. Let S be the
set of such vertices uj, which are of distance 2 to a vertex u ∈ Y and at least of distance 3 to any vertex of X . Then S will be a
subset of the set T . This finishes Subcase 3.

In the second case, if v ∈ Ri, then since D is a semi-total dominating set, there is some vertex (u, v) ∈ (πi × {v})∩Dv and
(w, v) ∈ (πj × {v}) ∩ Dv , for some j ∈ [k], so that (u, v) is at most distance 2 from (w, v).

Putting these cases together, we have the following disjoint union of sets:

T = Bv
∪ {ui : (i, v) /∈ Rv, 1 ≤ i ≤ ℓ} ∪ {ui : (i, v) /∈ Rv, ui /∈ Bv, ℓ + 1 ≤ i ≤ ℓ + m}

∪ A ∪ S (2)

To show T is a semi-total dominating set of G, it is enough to show that T is a dominating set, since we showed in each
subcase of the first case, and in the second case, that every vertex of T is of distance at most 2 to some other vertex of T . If a
vertex u is contained in πi for (i, v) ∈ Rv , then u is dominated by some vertex of Bv . If (i, v) /∈ Rv , then u is dominated either
by {ui : (i, v) /∈ Rv, 1 ≤ i ≤ ℓ}, or {ui : (i, v) /∈ Rv, ui /∈ Bv, ℓ + 1 ≤ i ≤ ℓ + m}, or A.

Furthermore,

|T | = |Bv
| + (γt2(G) − |Rv

| + |S|) = 2|Dv
| + (γt2(G) − |Rv

|) < γt2(G)

which is a contradiction. □

Thus, by Claim 1,

N =

∑
v∈V (H)

|Rv
| ≤

∑
v∈V (H)

2|Dv
| = 2|D| (3)

We now show a semi-total dominating set of H in terms ofMi.

Claim 2. For any i ∈ [k], there exists a set Xi of at most |Ri| − 1 vertices of V (H) so that Mi ∪ Pi ∪ Xi is a semi-total dominating
set of H.

Proof. We first observe that Pi ∪ Mi is a dominating set of H with the additional property that the vertices of Mi dominate
only themselves, not their neighbors. Thus, every vertex x ∈ Ri must be either of distance 3 to some vertex y ∈ Ri or every
vertex of distance 2 from x is a vertex ofMi. This holds since otherwise some vertex of distance 2 from x is not dominated by
Pi ∪ Mi. Furthermore, if x ∈ Ri which is of distance 3 to some vertex y ∈ Ri, then we may select one vertex z on a path from
x to y such that z is of distance at most 2 to both x and y.

We now construct a semi-total dominating set of H , Ti, by including the vertices of Mi, the vertices of Pi and vertices Xi
which are of distance at most 2 to two vertices of Ri which are themselves of distance three to each other. The minimum
number of such vertices is at most |Ri| − 1, which can be easily verified by induction on |Ri|, and the result follows. □

By Claim 2, for each i, we can construct a semi-total dominating set of H , Ti = Mi ∪ Ri ∪ Qi ∪ Xi. This gives |Mi| + |Ri| ≥

γt2(H) − |Xi| − |Qi|. However, note that Xi ∩ Qi = ∅ and |Xi| + |Qi| ≤ |Pi|. This implies that |Mi| + |Ri| ≥ γt2(H) − |Pi|. Thus,
we have

k∑
i=1

(
|Mi| + |Ri|

)
≥

k∑
i=1

(
γt2(H) − |Pi|

)
= γt2(G)γt2(H) − |D| (4)

Combining Eqs. (1), (3), and (4) we obtain

|D| ≥
1
3
γt2(G)γt2(H) □

3. Conclusion

In this paper we have proven two Vizing-type results on the semi-total domination number. Our main result, in
Theorem 2, shows that for isolate-free graphs G and H , we have the inequality γt2(G□H) ≥

1
3γt2(G)γt2(H). However, we

do not believe this bound is sharp, and conjecture a stronger result.

Conjecture 1. For any isolate-free graphs G and H,

γt2(G □ H) ≥
1
2
γt2(G)γt2(H).



12 J. Asplund, R. Davila and E. Krop / Discrete Applied Mathematics 258 (2019) 8–12

References

[1] B. Brešar, Improving the clark-suen bound on the domination number of the cartesian product of graphs, Discrete Math. 340 (2017) 2398–2401.
[2] B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M. Henning, S. Klavžar, D. Rall, Vizing’s conjecture: a survey and recent results, J. Graph Theory 69 (1)

(2012) 46–76.
[3] B. Brešar, T.R. Hartinger, T. Kos, M. Milanič, On total domination in the cartesian product of graphs, Discuss. Math. Graph Theory 38 (2018) 963–976,

http://dx.doi.org/10.7151/dmgt.2039.
[4] B. Brešar, M.A. Henning, D.F. Rall, Paired-domination of cartesian products of graphs and rainbow domination, Electron. Notes Discrete Math. 22

(2005) 233–237.
[5] W.E. Clark, S. Suen, An inequality related to vizing’s conjecture, Electron. J. Combin. 7 (N4) (2000).
[6] W. Goddard, M.A. Henning, C.A. McPillan, Semitotal domination in graphs, Util. Math. 94 (2014) 67–81.
[7] M.A. Henning, Edge weighting functions on semitotal dominating sets, Graphs Combin. 33 (2) (2017) 403–417.
[8] M.A. Henning, A.J. Marcon, Onmatching and semitotal domination in graphs, Discrete Math. 324 (2014) 13–18, http://dx.doi.org/10.1016/j.disc.2014.

01.021.
[9] M.A. Henning, A.J. Marcon, Semitotal domination in claw-free cubic graphs, Ann. Comb. 20 (4) (2016) 799–813.

[10] M.A. Henning, A.J. Marcon, Vertices contained in all or in no minimum semitotal dominating set of a tree, Discuss. Math. Graph Theory 36 (1) (2016)
71–93.

[11] M.A. Henning, A.J. Marcon, Semitotal domination in graphs: partition and algorithmic results, Util. Math. (2018) in press.
[12] M.A. Henning, D.F. Rall, On the total domination number of cartesian products of graphs, Graphs Combin. 21 (2005) 63–69.
[13] M.A. Henning, A. Yeo, Total domination in graphs, in: Springer Monographs in Mathematics, 2013, ISBN-13: 978-1461465249.
[14] P.T. Ho, A note on the total domination number, Util. Math. 77 (2008) 97–100.
[15] Y. Lou, X. Hou, Total domination in the cartesian product of a graph and k2 or cn , Util. Math. 83 (2010) 313–322.
[16] A.J. Marcon, Semitotal Domination in Graphs, (Ph.D. dissertation), University of Johannesburg, 2015.
[17] V.G. Vizing, The cartesian product of graphs, Vycisl. Sistemy 9 (1963) 30–43.
[18] E. Zhu, Z. Shao, J. Xu, Semitotal domination in claw-free cubic graphs, Graphs Combin. (2017) http://dx.doi.org/10.1007/s00373-017-1826-z.

http://refhub.elsevier.com/S0166-218X(18)30632-2/sb1
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb2
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb2
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb2
http://dx.doi.org/10.7151/dmgt.2039
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb4
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb4
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb4
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb5
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb6
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb7
http://dx.doi.org/10.1016/j.disc.2014.01.021
http://dx.doi.org/10.1016/j.disc.2014.01.021
http://dx.doi.org/10.1016/j.disc.2014.01.021
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb9
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb10
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb10
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb10
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb11
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb12
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb14
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb15
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb16
http://refhub.elsevier.com/S0166-218X(18)30632-2/sb17
http://dx.doi.org/10.1007/s00373-017-1826-z

	A Vizing-type result for semi-total domination
	Introduction
	Main Results
	Conclusion
	References


